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ABSTRACT

In this paper, we propose a model for households to share en-
ergy from community energy storage (CES) such that both
households and utility company benefit from CES. In addi-
tion to providing a range of ancillary grid services, CES can
also be used for demand side management, to shave peaks
and fill valleys in system load. We introduce a method stem-
ming from consumer theory and cooperative game theory that
uses CES to balance the load of an entire locality and man-
age household energy allocations respectively. Load balanc-
ing is derived as a geometric programming problem. Each
households contribution to overall non-uniformity of the load
profile is modeled using a characteristic function and Shapley
values are used to allocate the amount and price of surplus en-
ergy stored in CES. The proposed method is able to perfectly
balance the load while also making sure that each household
is guaranteed a reduction in energy costs.

Index Terms— Smart grids, demand side management,
community energy storage, load balancing, cooperative game.

1. INTRODUCTION

Demand side management (DSM) programs aim at balancing
residential load by shifting or scheduling consumption to off-
peak hours by means of smart pricing. Smart pricing com-
bined with fluctuating renewable energy production makes
energy storage systems (ESS) indispensable in smart homes.
Many effective techniques exist to optimize the integration of
ESS into the smart grids. However, the reduction in consump-
tion costs for a household by employing ESS such as batteries
is not commensurate with its capital and maintenance costs.
Hence, instead of delegating energy storage to households,
utility companies may opt to deploy medium-scale ESS at
the end of utility distribution system close to residential end
users. Community energy storage (CES) is a grid-connected,
utility-owned, modular, scalable distributed ESS deployed in
residential areas [1]. Typically, CES consists of an array of
batteries with capacities in the range of 25-250 kWh that can
support 10-150 smart homes. Apart from providing the basic
function of serving as a back-up energy system during power
outages, CES also helps with regular operation of the grid
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by providing ancillary services such as frequency regulation,
power factor correction, volt-var optimization, etc [1]. Most
importantly, CES can be used for DSM by shaving peak de-
mands and filling valleys in total system load of the locality.

From the utility company’s point of view, optimal energy
consumption of a household is defined as a consumption pro-
file that is as uniform as possible provided the household has
a financial incentive for choosing such a consumption pro-
file. Concepts from economic theory have been applied to
households with ESS to optimize their consumption to yield
extremely low peak to average consumption ratios (PAR) [2]
without additional energy costs. The same theory may also
be applied for balancing the load of an entire locality. CES
stores energy when market energy prices are low during off-
peak hours and sells it to households at a price that is higher
than the average cost of storing energy but lower than mar-
ket prices during peak hours. From this stored energy, how
much energy is each household allocated and at what price?
Is there an allocation/ pricing mechanism that is guaranteed
to provide all households with an incentive to cooperate? Co-
operative game theory [3] answers these questions by stipu-
lating how households can share the stored energy such that
both households and utility companies benefit from CES.

An overview of distributed ESS for residential communi-
ties is provided in [4]. A game-theoretic DSM mechanism
for jointly optimizing distributed energy generation and stor-
age has been studied in great detail [5]. Optimal integration
of distributed ESS in smart grids with different possible con-
ceivable regulatory schemes and services to be provided has
been studied in [6]. However, most of the prior work in load
balancing consider distributed ESS at the household level and
not at the local community level like CES. An efficient energy
management system for CES from the point of integrating
renewable energy sources such as photovoltaic cells is pro-
posed in [7]. Practical aspects involving implementation of
CES units at American Electric Power as part of a demonstra-
tion project have been detailed in [8].

The contributions of this paper are as follows. A model
for load balancing at the community level with CES is pro-
posed where households share the stored surplus energy from
CES in such a way that both households and utility com-
pany benefit from CES deployment. We introduce a method
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stemming from intertemporal trading and consumer theory
for load balancing that may be solved using a geometric pro-
gram (GP). The resulting consumption profile of the commu-
nity has extremely low PAR of 1.0472 and the utility com-
pany is presented with an almost perfectly uniform load. A
fair mechanism for allocating the amount and price of stored
energy to households is introduced using cooperative game
theory. The price of stored energy is computed using Shap-
ley values, depending upon each household’s contribution to
the overall non-uniformity of aggregate load profile. For a
given number of households served by a utility company with
CES, day-ahead energy prices and CES loss rates, the pro-
posed model is able to achieve two objectives simultaneously,
i.e., a) balance the load almost perfectly and b) ensure that all
households are guaranteed a reduction in energy costs.

Rest of this paper is organized as follows. System model
is described in Section II. Consumption optimization for CES
is formulated in section III. The cooperative game-theoretic
approach is developed in section IV. Simulation results are
provided in section V. Section VI concludes the paper.

2. SYSTEM MODEL

Consider a smart grid system where households in a locality
are served by a utility company and a CES unit. Each house-
hold, equipped with a smart meter, has access to day-ahead
hourly energy prices issued by the utility company and also
has accurate knowledge of its energy requirements during ev-
ery time period of the day. Ultility company controls CES
by means of an in-built smart battery management system.
Households define a N-period model as a 24 hour day that is
equally split into N intervals and each period is indexed by
{1,2,---, N}. The price, energy requirements, consumption
and state of CES batteries (charge levels at the end of a period)
from periods 1 through N are denoted by p1, l1, ¢1, by through
PN, N, cn,bn. Let byq, denote the capacity of CES and r
be the rate of storage loss per period in CES batteries that
accounts for unavoidable self-discharge and other loss fac-
tors, meaning £/ Wh of energy stored in one period is worth
E(1 — r) Wh of energy in the next period, i.e., (1 — ) is the
per period battery storage efficiency.

3. CONSUMPTION OPTIMIZATION

In this section, we give a brief introduction to intertemporal
trade and consumer theory and derive a GP formulation for
load balancing subject to budget and savings constraints.

3.1. Intertemporal Trade

In macroeconomic theory, intertemporal trade is defined as
the transaction of goods or money across time when an agent
is faced with the option of consuming and/or saving in the
present with the aim of using the savings in the future. CES
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stores energy during off-peak hours when energy demand and
prices are lower and uses it during time periods when en-
ergy demand and prices are higher. Intertemporal trade pro-
vides a budget constraint for matching total consumption of
all households with their aggregate daily energy requirements
while taking into account the capacity and loss rates of CES
batteries. The budget constraint is given by,
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CES capacity b,,4, and CES battery loss rate r per pe-
riod, how to choose an optimal consumption profile c* =
[e5,¢5, -+, ck]T, orin other words, when should CES charge
or discharge its batteries and by how much? The answer is
given by consumer theory.

3.2. Consumer Theory

Due to the varying nature of energy requirements of house-
holds and market energy prices over different time periods in
a day, CES faces a trade-off between storing energy for fu-
ture consumption and/or spending energy stored in the past.
Consumer theory concepts help in modeling the consumption
preferences of CES over different time periods as utility func-
tions. One such utility function is the Cobb-Douglas function
[9], which is used for modeling scenarios involving trade-offs
between choosing one quantity or the other. In this paper, we
use the Cobb-Douglas utility function given by,

u(er, Coyeyen) = 1% k™2 % ok ™Y 2)
to aptly capture how CES prefers a certain share « of con-
sumption in one period against another. « for period i is
chosen such that it represents the normalized cost of con-
sumption in all time periods excluding ¢ and by constraining
a1 + -+ + o, = 1, peaks in consumption are flattened.

3.3. Load Balancing

Optimal consumption is achieved when utility function of
CES is maximized subject to the budget constraint. In addi-
tion to budget constraint, we also add a savings constraint that
restricts the optimal consumption profile such that no house-
hold incurs any additional cost for balancing its consumption.
The optimization problem is given by,

Max u(cy, 2, ...y CN) = Hcfi, where, ?3)
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This class of optimization problems is referred to as a ge-
ometric program (GP) [10], where the objective function is
a posynomial and the constraints are posynomial equalities
and/or monomial inequalities. An optimal solution always ex-
ists for a GP, and the trick to solving it efficiently is to convert
it to a non-linear but convex optimization problem by loga-
rithmic change of variables. Computationally advanced meth-
ods such as primal-dual interior point algorithms can solve
large-scale GPs extremely efciently and reliably.

4. COOPERATIVE GAME THEORY

Cooperative game theory is used to model complex interac-
tions between players and to analyze various possible ways
in which the benefits of cooperation among players can be
shared in a fair manner. A cooperative game (H,v) in char-
acteristic form consists of a finite set H of households and
a characteristic function v, that associates with every non-
empty subset S C H, a real number v(S), that is known
as the worth of the coalition. v(.59) is the value created when
members of S come together, which is the total payoff that
is later available for division among members of S. The key
question here is, how much stored energy is allocated to each
household and at what price? In this section we formulate
a characteristic function that models the contribution of each
household to overall load non-uniformity and propose a one-
point solution for sharing the surplus energy stored by CES.

The amount of energy allocated to each household is sim-
ply proportional to the daily energy requirement of that house-
hold. Allocation of price of stored energy requires the con-
struction of a characteristic function that reflects the contri-
bution of each household to the non-uniformity of aggregate
load profile of the community. The contribution of house-
holds to the overall non-uniformity in load can be measured
in terms of the PAR of their energy requirements. Thus, the
characteristic function of this game is given by,

v(S) =max(Y_ 1)/} Y UN),

SCH j=1SCH
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where, [ represents the load profile of a household, S is any
non-empty coalition in H, and N is the total number of time
periods in a day. Thus, by measuring the PAR of energy re-
quirements, the characteristic function reflects the contribu-
tion of each household or any coalition of households to the
non-uniformity in total load profile of the community.

Any fair and stable allocation of the stored surplus en-
ergy and its prices must lie in the core of the game. Vari-
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ous cooperative game-theoretic solutions are available for al-
locating stored surplus energy from CES at a certain price to
households with each solution reflecting a certain type of fair-
ness concept such as min-max fairness, proportional fairness,
equal fairness, etc. The Shapley value ¢, is an one-point pay-
off solution that represents an average measure of fairness.
Shapley value for each household i, is given by,
(1 — _ 1)
R M R UCH RO
SCH\{i}
(5)
The price at which stored energy is sold to each house-
hold is directly proportional to its Shapley value payoffs and
lies between the market energy price and average cost of en-
ergy stored in CES. Since households with higher PAR that
contribute significantly to the non-uniformity of total load are
charged higher prices by CES for stored energy, this pric-
ing mechanism is considered as fair and is agreeable to all
households. Thus, all households are guaranteed a fair price
for stored energy along with reduction in consumption costs
which provides them with an incentive to cooperatively share
the stored surplus energy from CES.

5. RESULTS

In our examples, we use market energy prices based on USA
New England hourly real-time prices of January 1, 2011
[11]. We model the daily energy requirement of households
with usage-statistics-based load model proposed in [12].
This model simulates daily load with one hour time resolu-
tion through simulation of appliance use and also by taking
into account simulated resident activity in households. The
daily energy requirements of N = 10 households is simu-
lated using this model with the number of residents in each
household randomly distributed between 2 and 5. Day-ahead
hourly market energy prices, hourly energy requirements
of 10 households and aggregate energy requirements of all
households along with their individual share are shown in
Fig. 1(a), (b) and (c) respectively.

We solve for the 24-dimensional optimization problem
with CES loss rate of » = 0.001 and CES capacity of b, =
30 kWh using GGPLAB [13], a MATLAB package for speci-
fying and solving GPs. We see that the consumption profile is
almost perfectly uniform as shown in Fig. 1(d) and the utility
company is presented with a load profile that is as balanced as
possible. For the considered example data, PAR of aggregate
load profile is 2.2234, while the resulting optimal consump-
tion profile has a PAR of only 1.0472. The charging profile of
CES batteries is shown in Fig. 1(e). Positive values indicate
time periods when batteries are charged and negative values
indicate time periods when batteries are discharged, that is,
when stored surplus energy is sold to households. It is easy
to see that charging periods coincide with time periods when
market energy prices are low during off-peak hours and dis-
charging periods with that of time periods when market prices
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Optimal Consumption Profile of All Households in the Community
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Fig. 1. Optimal consumption profile for 10 households with
CES loss rate » = 0.001 and CES capacity b,,4, = 30 kWh.
(a) Day-ahead hourly market energy price set by the utility
company, (b) Hourly energy requirements of 10 households,
(c) Aggregate energy requirements of all households along
with their individual share, (d) Optimal consumption profile
of 10 households, (e) Battery charging/discharging profile of
CES, (f) CES cumulative battery charge levels. The aggregate
consumption profile of all households with CES is almost per-
fectly uniform with PAR = 1.0472.

are higher during peak hours. The total charge present in the
CES batteries at every time period is shown in Fig. 1(f).

Aggregate Household Energy Requirements, Optimal Consumption Profile, CES Charging/Discharging Levels
1

CES discharging period

CES charging period

Energy in kWh

Time period

Fig. 2. Energy visualization bar graph. (cyantblack) Op-
timal consumption profile of all households, (black+multi-
colour) Aggregate energy requirements of all households,
(cyantmulti-colour) CES batteries’ charging and discharging
profiles, (multi-colour) Amount of stored energy sold to all
households along with the individual household allocation.

The optimal energy consumption of all the households in
the locality, aggregate energy requirements of all households,
CES batteries’ charging/discharging profile and the amount of
stored energy allocated to each household by CES can all be
visualized in a single bar graph as shown in Fig. 2. The com-
bination of cyan and black bars represent the balanced load
profile of all households which is the same as shown in Fig.
1(d). The combination of black and multi-coloured bars rep-
resents the aggregate daily energy requirements of all house-
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holds, which is the same as shown in Fig. 1(c). The combina-
tion of cyan and multi-coloured bars indicate CES batteries’
charging and discharging profiles with cyan bars represent-
ing charging times and multi-coloured bars representing dis-
charging times. The multi-coloured bars indicate the amount
of stored energy that is sold to all the households. Each colour
in the multi-coloured bar represents the share of total stored
energy that is allocated to each household by the CES. Higher
the energy requirement of a household, the larger the share of
stored energy that is allocated to it by CES.

The price at which stored energy is sold to each household
is shown by multi-coloured lines in Fig. 3(a). The cyan curve
on top indicates the market energy prices set by the utility
company while the black curve at the bottom represents the
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Fig. 3. (a)Market energy prices set by utility company, average
cost incurred by CES for energy stored and selling price for
each household. Selling price of stored energy lies in between
market price set by utility company and the average cost in-
curred by CES for storing energy. (b) Comparison between
consumption costs with and without CES for each household.
All households are able to reduce their consumption costs by
buying a part of their energy requirements from CES.

average cost incurred by CES for all the energy stored up un-
til every time period. The price at which the stored energy
from CES is sold to a household depends on the contribution
of the household to the overall aggregate PAR. While CES
is charging, households buy energy directly from the market,
but while CES is discharging, it sells energy to households at
prices lower than market prices. It can be seen that the sell-
ing price of stored energy lies in between the market energy
price set by utility company and the average cost incurred by
CES for storing energy, thereby resulting in profits for both
households and CES. A comparison between total consump-
tion costs with and without CES for each household is shown
in Fig. 3(b). It can be seen that every single household expe-
riences a reduction in consumption costs when buying part of
their energy from CES as compared to buying all their energy
from the utility company in real time. Household #2 expe-
riences a maximum reduction of 5.08%, while household #3
experiences only 3.24% reduction in total consumption costs
with the average reduction being around 4%.

The amount of stored energy that is allocated to each
household is proportional to its energy requirement at that
time period. The contribution of each household to the over-
all non-uniformity of load reflects in the price at which the
CES sells them stored energy. For example, Table. 1. shows
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the PAR values, energy requirements, allocated energy and
price for each household during time period 18. The PAR of

House PAR Energy Needs  Energy Allocated  Energy Price
# value (kWh) (kWh) (¢/kWh)
1 2.4365 0.6347 0.3616 3.7827
2 3.3567 1.0212 0.5818 3.9274
3 4.0822 0.7852 0.4474 4.0547
4 2.6316 0.8296 0.4727 3.7815
5 2.8453 0.5226 0.2977 3.8317
6 3.2889 1.5631 0.8905 3.8866
7 3.0499 0.6965 0.3968 3.8929
8 2.4668 0.5977 0.3405 3.7892
9 3.8318 1.6353 0.9317 3.9478
10 3.5837 0.7926 0.4516 4.0066

Table 1. Allocation of stored energy and its price, PAR values
and energy requirements of all households

households’ energy requirements vary between 2.4 to 4 and
the PAR of aggregate load profile of all households in the
community is 2.2234. In general, it can be seen that house-
holds with high PAR values are charged higher prices by the
CES. Interestingly, though house #10 has a lower PAR as
compared to house #9, it still pays a higher price for stored
energy sold by CES. This happens because the price is calcu-
lated according to the contribution of each household to the
overall PAR and not according to their individual PAR values.

Thus, in this proposed model, the utility company benefits
from a highly balanced load and all households benefit from
guaranteed reduction in consumption costs.

6. CONCLUSIONS

A cooperative model for households to share energy from
community energy storage (CES) in such a way that both
households and utility company benefit from CES deploy-
ment is proposed. This approach provides households with
an incentive to cooperatively share the benefits of CES by
guaranteeing a reduction in energy costs while also present-
ing the utility company with a balanced load. CES uses the
stored energy to balance the load profile of the entire commu-
nity and sells the stored energy to households at prices that
guarantee them a reduction in energy costs. We introduce a
method stemming from intertemporal trading and consumer
theory for formulating the load balancing problem as a geo-
metric program. The resulting optimal consumption profile
is almost perfectly uniform with an extremely low PAR value
of 1.0472. A fair mechanism for allocating the amount and
price of stored energy to households is designed using coop-
erative game theory. By ensuring fair prices for stored energy
and an average reduction in consumption costs of about 4%,
CES provides an incentive for all households to cooperatively
share the stored energy. Thus, the proposed model is able to
almost perfectly balance the aggregate load of all households
in the community while also making sure that all households
are provided an incentive to cooperate by means of guaran-
teed reduction in consumption costs.
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