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ABSTRACT

Cooperation among agents across the network leads to bet-

ter estimation accuracy. However, in many network applica-

tions the agents infer and track different models of interest in

an environment where agents do not know beforehand which

models are being observed by their neighbors. In this work,

we propose an adaptive and distributed clustering technique

that allows agents to learn and form clusters from streaming

data in a robust manner. Once clusters are formed, coopera-

tion among agents with similar objectives then enhances the

performance of the inference task. The performance of the

proposed clustering algorithm is discussed by commenting

on the behavior of probabilities of erroneous decision. We

validate the performance of the algorithm by numerical sim-

ulations, that show how the clustering process enhances the

mean-square-error performance of the agents across the net-

work.

Index Terms— Decentralized clustering, multitask net-

works, self-organization, diffusion adaptation, adaptive net-

works.

1. INTRODUCTION AND RELATED WORK

We consider a distributed mean-square-error estimation prob-

lem over an N -agent network. The connectivity of the agents

is described by a graph. We assume that the data sensed by

any particular agent can arise from one of C models. Each

model is represented by an M × 1 weight vector denoted by

wo
C,c, where c = 1, . . . , C. There are many applications in

practice where agents can be subjected to data from differ-

ent sources as it happens, for example, in target tracking or

swarming towards different food sources (cf. [1–10]).

In most prior works, it is generally assumed that each

agent knows which neighbors are influenced by the same

model. In this work, we assume that the agents do not know

which model generated their received data; they also do not

know which other agents in their neighborhood sense data

† The work of A. H. Sayed was supported in part by NSF grants CCF-

1011918 and ECCS-1407712.

arising from the same model. We are then interested in per-

forming clustering. By clustering, we mean the determination

of the sets of connected agents that are interested in the same

model.

A useful strategy for clustering over adaptive networks

was proposed in [11], relying on the use of adaptive combi-

nation weights. This strategy was further refined in [12] to

reduce its sensitivity to initial conditions. Under these strate-

gies, there still exists a possibility that links between some

agents belonging to the same cluster may be overlooked. In

order to avoid this difficulty and obtain a more robust method,

the work in [13] proposed an alternative construction where

the clustering and inference tasks are separated from each

other. For sufficiently small step-sizes, this approach was

shown to lead to probabilities of error that decay exponen-

tially to zero. Motivated by [13], we propose a modified strat-

egy where we merge the clustering and inference tasks, thus

reducing the computation burden while enhancing the accu-

racy of the clustering step relative to [11, 12].

The work is organized as follows, the network model is

described in Section 2. In Section 3 we motivate the diffusion

LMS algorithm for our distributed estimation task. The clus-

tering technique and how the agents compute its combination

weights are illustrated in detail in Section 4. The probabilities

of erroneous decision are analyzed in Section 5. Simulations

results are presented in Section 6. Finally, we conclude the

work in Section 7.

Notation. We use lowercase letters to denote vectors, upper-

case letters for matrices, plain letters for deterministic vari-

ables, and boldface letters for random variables. E denotes

the expectation operator and ‖ · ‖ the Euclidean norm. All

vectors are column vectors, except for the regression vectors

uk,i, which are row vectors. The symbols 1 and I denote the

all-one vector and identity matrix of appropriate sizes, respec-

tively. We write (·)⊺, (·)∗, and Tr(·) to denote transposition,

complex conjugate-transposition, and the matrix trace opera-

tion, respectively.
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Fig. 1: Illustration of a network topology with three clusters represented by

the three colors. Note that agent k has neighbors that sense data originating

from different clusters than its own.

2. NETWORK MODEL

Figure 1 illustrates the network structure for a case involv-

ing C = 3 three unknown models. The unknown models are

denoted by {wo
C,1, w

o
C,2, w

o
C,3}. In the figure, agents with the

same color belong to the same cluster and are therefore inter-

ested in estimating the same parameter vector. We denote the

set of neighbors of an agent k by Nk. We may represent the

network topology by means of the N × N adjacency matrix

E whose entries eℓk are defined as follows:

eℓk =

{

1, ℓ ∈ Nk

0, otherwise
(1)

We assume that each agent k belongs to its neighborhood

set, k ∈ Nk. Agents know their neighborhoods but they

do not know which subset of their neighbors is subjected to

data from the same model. In order to devise a procedure

that allows them to arrive at this information, we introduce an

N ×N clustering matrix Ei, at time i, in a manner similar to

the adjacency matrix, except that the value at location (ℓ, k)
will be set to one if agent k believes at time i that its neighbor

ℓ belongs to the same cluster. In this way, the data exchange

among the agents will be applied based on the set Nk,i, which

is deduced from matrix Ei instead of the original adjacency

matrix, E. Each entry eℓk(i) from the matrix Ei is computed

according to the clustering scheme described in the sequel.

3. DATA MODEL AND DIFFUSION STRATEGY

At every time instant i, every agent k has access to a scalar

measurement dk(i) and a 1 ×M regression vector uk,i. The

measurements across all agents are assumed to be generated

via the linear regression model:

dk(i) = uk,iw
o
k + vk(i) (2)

where wo
k denotes the unknown model for agent k. All ran-

dom processes are assumed to be stationary. Moreover, vk(i)

Fig. 2: Illustration of the clustered topology that will result once agents

identify which neighbors belong to the same cluster and cut links to the re-

maining neighbors.

is a zero-mean white measurement noise that is independent

over space and has variance σ2
v,k . It is assumed that the re-

gression data uk,i is a zero-mean Gaussian process, indepen-

dent over time and space, and independent of vℓ(j) for all

k, ℓ, i, j. We denote the covariance matrix of uk,i by Ru,k ,

Eu∗
k,iuk,i. In (2), the unknown models {wo

k}, k = 1, . . . , N ,

arise from the C models, i.e., wo
k = wo

C,c for some c . We

stack the wo
k into a column vector:

wo , col{wo
1, w

o
2 , . . . , w

o
N}. (3)

We seek the optimal estimator that minimizes the following

global cost function over the vectors {wk}:

J(w1, w2, . . . , wN ) ,

N
∑

k=1

E|dk(i)− uk,iwk|
2. (4)

Ideally, cooperation among agents should be restricted to

neighbors that belong to the same cluster, i.e., agent k will

share data with ℓ only if wo
k = wo

ℓ . However, agents do not

know beforehand which neighbors belong to the same cluster.

Accordingly, cooperation will be limited to those neighbors

that are believed to belong to the same cluster, as identified

by Nk,i. Motivated by the derivations in [2, 14], each agent k
therefore runs the following LMS diffusion strategy:

ψk,i =ψk,i−1 + µku
∗
k,i(dk(i)− uk,iψk,i−1) (5)

wk,i =

N
∑

ℓ=1

aℓk(i)ψℓ,i (6)

where the nonnegative combination coefficients in (6) are

seen to be time-dependent and should satisfy:

aℓk(i) = 0 for ℓ /∈ Nk,i,

N
∑

ℓ=1

aℓk(i) = 1. (7)

Observe that the combination coefficient aℓk(i) is non-zero

only if ℓ is believed to belong to the same neighborhood and
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cluster as agent k. The cluster information is retrieved from

matrix Ei, which is updated continuously. The coefficients

aℓk(i) are selected as explained next.

4. SELECTION OF COMBINATION WEIGHTS

We denote the neighborhood set of agent k excluding k itself

byN−
k . We also introduce anN×N trust matrixFi; the entry

fℓk(i) of this matrix reflects the amount of trust that agent k
has in neighbor ℓ ∈ N−

k belonging to its cluster. The entries

of Fi are constructed as follows. Agent k first computes the

Boolean variable:

bℓk(i) =

{

1, if ‖ψℓ,i − wk,i−1‖
2 ≤ α

0, otherwise
(8)

where 0 < α is some threshold value. Subsequently, the trust

level fℓk(i) is smoothed as follows:

fℓk(i) = ν × fℓk(i − 1) + (1− ν)× bℓk(i) (9)

where the forgetting factor, 0 < ν < 1, determines the speed

with which trust in neighbor ℓ accumulates. Once fℓk(i) ex-

ceeds 0.5, agent k declares that neighbor ℓ belongs to its clus-

ter and sets the corresponding entry of Ei to one. In other

words, at each time i, the entries of Ei are set as follows:

eℓk(i) = ⌊fℓk(i)⌉ (10)

where the notation ⌊·⌉ denotes rounding to the nearest inte-

ger. The smoothing step (9) provides a useful variation to the

protocol proposed in [13]. By using smoothed values for the

trust variables, we are able to couple the clustering and infer-

ence procedures into a single iterative algorithm rather than

run them separately. This is because smoothing helps reduce

the influence of erroneous clustering decisions on the accu-

racy of the inference task. The following listing summarizes

the proposed diffusion strategy with clustering.

5. PERFORMANCE ANALYSIS

5.1. Clustering Errors

Motivated by the analyses in [1, 13], we comment briefly on

the expected performance of the proposed clustering proce-

dure by examining the behavior of the probabilities of erro-

neous decisions of types I and II for each agent k, namely,

the probabilities that a link between k and one of its neigh-

bors will be either erroneously disconnected (when it should

be connected) or erroneously connected (when it should be

disconnected):

Type-I: wo
k = wo

ℓ and aℓk(i) = 0 (11)

Type-II: wo
k 6= wo

ℓ and aℓk(i) 6= 0 (12)

Algorithm 1 ATC Diffusion LMS with Clustering.

Initialize E−1 = E, wk,−1 = 0, and F−1 = I . For each

k = 1, . . . , N :

for i ≥ 0 do

ψk,i = ψk,i−1 + µku
∗
k,i(dk(i)− uk,iψk,i−1)

for ℓ ∈ N−
k do ⊲ ℓ 6= k

bℓk(i) =

{

1, if ‖ψℓ,i − wk,i−1‖2 ≤ α

0, otherwise

fℓk(i) = ν × fℓk(i− 1) + (1− ν)× bℓk(i)

eℓk(i) = ⌊fℓk(i)⌉

end for

select aℓk(i) according to (7)

wk,i =

N
∑

ℓ=1

aℓk(i)ψℓ,i

end for

for any ℓ ∈ Nk. These probabilities are given by:

P1 = Pr(f ℓk(i) < 0.5|wo
ℓ = wo

k). (13)

P2 = Pr(f ℓk(i) ≥ 0.5|wo
ℓ 6= wo

k). (14)

We are assuming sufficient training time has elapsed so that

these probabilities can be assumed to be independent of time.

In order to find bounds for P1 and P2, we examine the prob-

ability distribution of the trust variable f ℓk(i), now treated as

a random variable. Using (9), we have:

f ℓk(i) = νi+1f ℓk(−1) + (1− ν)

i
∑

j=0

νjbℓk(i− j) (15)

where bℓk(i) is modelled as a Bernoulli random variable.

The assignment of bℓk(i) to one corresponds to the event

described by

‖ψℓ,i −wk,i−1‖
2 ≤ α. (16)

We denote respectively the probabilities of true and false as-

signments (again under the assumption of time-independence)

by

Pd = Pr(bℓk(i) = 1|wo
ℓ = wo

k). (17)

Pf = Pr(bℓk(i) = 1|wo
ℓ 6= wo

k). (18)

These probabilities also satisfy:

(1 − Pd) = Pr(‖ψℓ,i −wk,i−1‖
2 > α|wo

ℓ = wo
k). (19)

Pf = Pr(‖ψℓ,i −wk,i−1‖
2 ≤ α|wo

ℓ 6= wo
k). (20)

Using arguments similar to [1], it can be argued that approxi-

mately the following two time-independent probabilities hold

P1 ≤
1− ν

1 + ν
.
Pd(1− Pd)

(Pd − 0.5)2
. (21)
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P2 ≤
1− ν

1 + ν
.
Pf (1− Pf )

(0.5− Pf )2
. (22)

Moreover, arguments similar to [13] indicate that after suffi-

cient iterations and for small enough α and step-sizes,

(1− Pd) ≤ O(e−c1/µmax) (23)

Pf ≤ O(e−c2/µmax) (24)

for some constants c1, c2 > 0, where the maximum step-size

across the agents is denoted by µmax. It is then seen that

the probabilities P1 and P2 are expected to approach zero for

vanishing step-sizes.

5.2. Learning Curves

The transient mean-square deviation (MSD) of the network at

each time instant i is defined by:

MSDnetwork(i) ,
1

N

N
∑

k=1

E‖wo
k −wk,i‖

2. (25)

Both types of clustering errors affect the network MSD, but

it is clear that errors of type II have the worst effect because

of the sharing of data from different models. We define the

N × N true clustering matrix Eo, where each entry is given

by

eoℓk =

{

1, wo
ℓ = wo

k and ℓ ∈ Nk

0, otherwise
(26)

The normalized clustering errors of types I and II by each

agent k at time instant i are given, respectively, by

v1,k(i) ,
(1− [Ei]:,k)

⊺ × ([Eo]
:,k − [Ei]:,k)

(nk − 1)
(27)

v2,k(i) ,
[Ei]

⊺

:,k × ([Ei]:,k − [Eo]
:,k)

(nk − 1)
(28)

where nk , |Nk| is the number of agent k’s neighbors.

6. SIMULATION RESULTS

We consider a fully connected network with 100 randomly

distributed agents. The statistical profile of the noise across

the agents is σ2
k ∈ [0.8, 0.22], for k = 1, . . . , N . The re-

gressors are of size M = 2, zero-mean Gaussian variables,

independent in time and space, and have diagonal covariance

matrices Ru,k = λkIM where λk ∈ [0.8, 1.2]. We chose

{µ, α, ν} = {0.05, 0.01, 0.98}. The maximum number of

neighbors is nk = 6. The agents observe data originating

from three different models C = 3, each model wo
C,c ∈

R
M×1 is generated as follows: wo

C,c = [wr1 , . . . , wrM ]⊺

where wrm ∈ [1,−1]. The assignment of agents to models

is random. We use a uniform combination policy to generate

(a) (b)

Fig. 3: (a) Network topology. (b) Estimated cluster structure.
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Fig. 4: (a) Network MSD; (b) clustering error v1 and (c) v2.

the coefficients aℓk(i). The simulation results are obtained by

averaging over 100 independent experiments. Figure 3 shows

the topology of one of these experiments and the estimated
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Fig. 5: (a) Network MSD; (b) clustering error v1 and (c) v2.

cluster structure. Figure 4a shows the MSD learning curves

and the theoretical steady-state values. The normalized clus-

tering errors over the network are shown in Figure 4b. The

results are seen to enhance performance in terms of clustering

errors. Figure 5 shows results for the case in which the model

assignments change at time i = 500 for a network of size

N = 50. This simulation shows the ability of the algorithm

to track drifts in the models.

7. CONCLUSION

In this paper we proposed a distributed algorithm that carries

out the tasks of estimation and clustering simultaneously with

exponentially decaying error probabilities for false decisions.

We showed how the agents choose a set of their neighbors

to cooperate with and turn off the suspicious links with the

remaining neighbors. The simulations illustrate the perfor-

mance of the proposed strategy and compare with other re-

lated works.
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