
FORENSIC AND ANTI-FORENSIC ANALYSIS OF INDOOR/OUTDOOR CLASSIFIERS

BASED ON ACOUSTIC CLUES

M. Mascia, A. Canclini, F. Antonacci, M. Tagliasacchi, A. Sarti, S. Tubaro

Dipartimento di Elettronica, Informazione e Bioingegneria

Politecnico di Milano, 20133 Milano, Italy

ABSTRACT

This paper addresses the problem of identifying the class of

the environment where an audio recording was taken. We

focus on distinguishing between indoor and outdoor speech

recordings, and we propose a set of classifiers that provide a

support for the forensic analyst in verifying the authenticity of

audio content. The classifiers rely on acoustic clues extracted

from the reverberant signal, namely the reverberation time

(RT60 ) and MFCC/LMSC feature vectors. We conducted

several experiments, aimed at analyzing the algorithms from

both the forensic and anti-forensic perspective. To do so, we

devised a methodology for manipulating the signals in order

to pretend that outdoor contents were recorded indoor, and

vice-versa. Experimental results confirm the effectiveness of

the proposed methods, which achieve high classification ac-

curacy. The anti-forensics analysis reveals that attacks have

moderate success rates, and severely depend from the classi-

fication algorithm adopted by the analyst.

Index Terms— audio forensics, anti-forensics, audio au-

thentication, acoustic environment identification

1. INTRODUCTION

The increased availability of multimedia digital objects made

them more and more adopted in courts of law, and other of-

ficial venues, as evidence for establishing facts. For this rea-

son, in the last few years, audio have received a great deal

of attention from the multimedia forensics community [1].

Audio forensics includes authentication, aimed at verifying

whether audio content is pristine; and audio tampering de-

tection, which focuses on detecting and localizing malicious

manipulations aimed at hiding or altering relevant informa-

tion. Concerning tampering detection, many works rely on

the extraction of the Electric Network Frequency (ENF) from

the signal under analysis, whose phase discontinuities reveal

potential attacks [2]. Other approaches aim at identifying the

recording device, analyzing the footprints left by different mi-

crophones [3], possibly in conjunction with the ENF signal

[4]. An overview of methods for audio authentication is re-

ported in [5]. For instance, in [2] the authenticity of audio

contents is verified by comparing the extracted ENF with a

reference database. In [6], a system for audio bootleg (illegal

versions of copyrighted objects) identification is proposed.

An important aspect of authentication is related to rever-

beration, which can be seen as the trace left by the envi-

ronment on the acquired signal (called “roomprints” in [7]).

The information carried by reverberation can be useful for

certifying that a recording was made in a particular room

and, moreover, to identify the room where the recording took

place. Many works in the literature address these problems,

with particular focus on speech recordings. In [8], a SVM

(Support Vector Machine) is adopted to classify the environ-

ment, on the basis of MFCC (Mel-Frequency Cepstral Co-

efficients) and LMSC (Log Mel-Frequency Spectral Coeffi-

cients) acoustic features. Authors in [9] accomplish the iden-

tification task by using a GMM (Gaussian Mixture Model)

classifier based on MFCCs. In [10] audio steganalysis fea-

tures are used for jointly determining the microphone used

and the environment. In [11], MFCCs are matched against

those extracted from a reference database, in order to classify

the environments according to their volume.

Differently from the aforementioned approaches, in this

work we address the problem without relying on a database

of reference room impulse responses (as done in [11]), nei-

ther limiting the identification to a set of candidate environ-

ments (as in [8, 9, 10]). Instead, we consider the problem of

distinguishing speech signals recorded in indoor and outdoor

locations. As noticed in [12], this task is helpful for verify-

ing the coherence of the audio and video tracks in a recorded

video file. The problem is addressed by exploiting two kinds

of acoustic features: the reverberation time RT60 (i.e., the

time taken for an impulsive sound to drop 60 dB below its ini-

tial intensity) and the MFCC/LMSC feature vectors. Outdoor

locations are typically characterized by short RT60 values;

conversely, indoor environments usually exhibit higher re-

verberation times, which implicitly provide a rough informa-

tion about the volume of the enclosure. Unfortunately, the

sole knowledge of the RT60 is not sufficient to identify the

class of an acoustic environment. In fact, we can trust only

on blind estimates of RT60 , which may be affected by er-

rors. Moreover, some outdoor places may exhibit reverbera-

tion times higher or comparable to those of low-reverberant

indoor locations. For these reasons, we also consider the

MFCC/LMSC feature sets extracted from an estimate of the
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reverberant component of the signal, which revealed to be ro-

bust for acoustic environment identification purposes [8].

In this paper we propose and compare a set of classifi-

cation algorithms, which differently combine RT60 estimates

and the MFCC/LMSC features. The goal of the work is

twofold: on one hand we aim at assessing the effectiveness

of the proposed algorithms from the forensic analyst per-

spective, thus investigating to what extent it is possible for

an analyst to accurately discriminate between indoor and

outdoor recordings. On the other hand, we are interested in

considering an anti-forensic scenario, where the recordings

are maliciously altered in order to deceive the analyst. To do

so, we first design an anti-forensic methodology for manipu-

lating the audio content; then we test the proposed classifiers

over a set of manipulated audio objects. The experimental re-

sults confirmed the effectiveness of the classifiers in absence

of an adversary. The anti-forensic analysis made possible to

identify the algorithms that minimize the success rate of the

attack, keeping it moderate.

2. THEORETICAL BACKGROUND

This section describes the theoretical background at the basis

of the adopted classification algorithms. We first summarize

the state-of-the-art algorithms for the blind estimation of the

reverberation time. Then, we focus on the problem of ob-

taining the reverberant component from those signals, from

which MFCC/LMSC features are extracted.

2.1. Blind estimation of the reverberation time

Signal model The algorithms described in this paragraph rely

on the conventional signal model xR(t) = xD(t) ∗ h(t) ,

where xR(t) represents the reverberant speech signal; xD(t)
is the dry (anechoic) speech signal; and h(t) is the impulse

response of the environment. For t ≥ L0, L0 being the

time sample corresponding to the delay caused by the prop-

agation from the speaker to the microphone, the response is

modeled as an exponentially damped Gaussian white noise

process [13]. Such model is given by the function d(t) =
atv(t) = e−t/τv(t) where v(t), t ≥ 0, is a sequence of

i.i.d. random variables drawn from the normal distribution

N (0, 1). The constant τ describes the decay, and is pro-

portional to the reverberation time through the relationship

RT60 = (3 · ln 10)τ . The goal of the algorithms is, therefore,

to estimate τ for inferring the reverberation time RT60 .

Algorithms Ratnam et al. [13] proposed to estimate the pa-

rameter a using a maximum likelihood approach. The speech

signal xR(t) is segmented into short frames and, for each

frame, an estimate of a is obtained through a two-step iter-

ative optimization. On the base of such estimates, an order-

statistics filtering [13] is adopted for selecting the frames that

include a free decay, and discarding all the others. The se-

quence of estimates of a relative to the retained frames is

then processed with a median filter, followed by a temporal

smoothing filtering. The last value of a in the sequence fi-

nally leads to the estimate of the RT60 .

Löllman et al. [14] proposed a more computationally ef-

ficient variant of Ratnam’s method. In a preliminary stage,

the reverberant signal xR(t) is downsampled to operate a pre-

selection of the frames candidate to contain free sound de-

cays. Then, the algorithm follows the same steps as in [13]

to obtain a sequence of estimates of the parameter a. The fi-

nal RT60 value is obtained after a recursive smoothing of the

sequence, aimed at reducing the variance of the estimation.

2.2. Blind estimation of the reverberant signal

In this paragraph we outline the algorithm proposed in [8] for

extracting the reverberant component from a speech record-

ing. The room impulse response h(t) is segmented in K + 1
blocks of length L, denoted as h̄0(t), . . . h̄L(t). It is assumed

that the first block contains only the direct path, i.e., h̄0(t) =
δ(t− L0), so that

xR(t) = xD(t−L0)+r(t) , r(t) =

K∑

n=1

xD(t−nL)∗h̄n(t) ,

where r(t) indicates the reverberant signal to be estimated.

A short-time analysis of the input signal is performed, and

we indicate with XR
m(ω) and XD

m(ω) the Short-Time Fourier

Transforms (STFTs) of xR(t) and xD(t), respectively, where

m is the temporal index. Moreover, we refer to H̄n(ω) as

the Fourier transform of h̄n(t). In a first stage, the algorithm

provides a set of perceptual relevant estimates of the actual

responses H̄n(ω), n = 0, . . .K (see [8] for details), which

are employed to compute an estimate |X̂D
m(ω)|2 of the power

spectrum of the dry signal. The magnitude of the reverber-

ant signal is then estimated through spectral subtraction, i.e.

|R̂m(ω)|2 = |XR
m(ω)|2 − |X̂D

m(ω)|2 . The phase component

of XR
m(ω) is used for approximating that of R̂m(ω), and the

reverberant signal r̂(t) is obtained through inverse STFT of

R̂m(ω). As in [8], the signal r̂(t) is finally used for extracting

the MFCC/LMSC features, which represent one of the inputs

of the indoor/outdoor classifiers.

3. CLASSIFICATION SYSTEMS

In this section we detail the algorithms for indoor/outdoor

classification. We start from those based on estimates of

the RT60 . Then, we describe the method based on the

MFCC/LMSC feature sets. Finally we consider two fusion

techniques that differently combine the RT60 estimates and

the extracted features.

3.1. Threshold-based classification

The simplest classification system can be derived by thresh-

olding the estimated RT60 values, considering the fact that

small reverberation times generally correspond to outdoor en-

vironments, while higher values are representative of indoor

locations. Denoting with RT60(·) the function that estimates

the reverberation time, the signal xR is classified as outdoor

if RT60(x
R) < T̄ , and indoor otherwise. The discriminant
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threshold is selected as the value T̄ that maximizes the accu-

racy of the classifier.

In this work we consider two threshold-based classi-

fiers, derived from the two methods for the estimation of the

RT60 discussed in Section 2.1.

3.2. Feature-based classification

In this paragraph we derive a classification system based on

acoustic features extracted from the reverberant component

r(t), estimated as described in Section 2.2. Following the

same approach as in [8], the 26 MFCC and 26 LMSC feature

sets are computed from r(t), and then concatenated to obtain

a 52 elements global feature vector. To reduce the overfitting,

we adopt the scalar feature selection technique described in

[15], and the most effective features are then employed for

building the classifier. As in [8], we consider a SVM with a

radial basis kernel function to perform the classification.

3.3. Fusion-based algorithms

Fusion methods allow to integrate different kinds of knowl-

edge or data in a new classifier, and are widely adopted to

improve the effectiveness and the robustness of the classifica-

tion. We consider fusion at feature and at measurement level.

Feature-level fusion With fusion at feature level, different

features originally collected for different classifiers are put

together and used to train a new classifier. A novel feature

vector is obtained by concatenating the MFCC/LMSC fea-

tures and the two RT60 estimates provided by the Ratnam’

and Löllmann’ methods (Section 2.1). The feature selection

stage revealed the presence of the two RT60 estimates among

the 5 most relevant features, thus confirming the discrimina-

tive power of such values. As before, the classification is ac-

complished by a SVM with radial basis kernel function, con-

sidering the most significant features.

Measurement-level fusion Fusion at measurement level is

performed by mixing the outcome of various classifiers, to

produce a final decision for the classification. In this pa-

per we consider the plurality vote method described in [16]:

given the outputs of M classifiers (C1(x), . . . , CM (x)), the

classification of the dataset entry x is obtained as C(x) =
mode [C1(x), . . . CM (x)] . The resultant novel classifiers

considers the outcomes of M = 3 systems: the two threshold-

based classifiers (Section 3.1) and the feature-based method

(Section 3.2).

4. DATASET DESCRIPTION

In this section we describe the dataset used for assessing the

performance of the proposed indoor/outdoor classification

systems. The dataset were built starting from 14 dry speech

recordings1 from different speakers: 6 males, 6 females, 2

children. The signals were recorded in anechoic conditions,

and sampled at 48 kHz. A total number of 196 reverberant

speech signals were obtained through the convolution of each

1TSP Database, www-mmsp.ece.mcgill.ca/Documents/Data/

BLIND

DE−REVERB.

xR
i (t) x̂D(t) xA

ij(t)hj(t)

Fig. 1: General scheme for anti-forentics manipulations.

dry signal with 14 impulse responses relative to different

acoustic environments. Each signal xD(t) generates the set

of reverberated signals xR
i (t) = xD(t) ∗ hi(t), where hi(t)

is the impulse response of the ith environment, i = 1, . . . 14.

We considered 7 indoor and 7 outdoor responses 2, coming

from locations such as variously sized rooms, open spaces,

churches, and parking lots. The considered impulse responses

are provided along with the corresponding reverberation time

RT60 , which ranges from 1.08 s to 7.65 s for the indoor case;

and from 0.54 s to 1.58 s for the outdoor case. The resulting

dataset contains 98 representatives for each of the two classes,

for a total of 196 reverberant speech signals.

In order to test the robustness of the classification systems

against anti-forensic attacks, we altered the dataset following

the scheme in Fig. 1. In a first stage, the original dataset sig-

nals xR
i (t) were dereverberated by subtracting the reverberant

components r̂i(t) estimated using the technique discussed in

Section 2.2. More specifically, an estimate of the dry signal

is given by x̂D(t) = xR
i (t) − r̂i(t). This operation represents

the attempt of deleting the traces left by the original envi-

ronment. After that, we need to simulate the effect of a new

environment (different from the original one). To do so, we

obtain the attacked signal as xA
ij(t) = x̂D(t) ∗ hj(t), where

hj(t) (j 6= i) is the impulse response of the new environment.

We considered two different manipulations:

1) outdoor-to-indoor attack: the 98 signals of the outdoor

class were dereverberated and then convolved with the 7 in-

door impulse responses, obtaining a total number of 686 at-

tacks. A further set of 686 attacked signals was obtained by

skipping the dereverberation;

2) indoor-to-outdoor attack: the 98 signals of the indoor

class were dereverberated and then convolved with the 7 out-

door responses, leading to 686 altered signals. We obtained a

further set of 98 attacked signals by skipping the convolution.

5. EXPERIMENTAL RESULTS

In this section we assess the performance of the classifica-

tion systems. We first consider the perspective of the forensic

analyst without the presence of an adversary, testing the pro-

posed classification systems on the 196 signals in the dataset;

then, we analyze the anti-forensic scenario, assessing the per-

formance of the classifiers on the dataset manipulated by an

adversary. We will refer to the classifiers as: RAT (classi-

fier based on the Ratnam’s estimator); LOLL (classifier based

on the Löllmann’s estimator); FEAT (classifier based on the

2Open air library, www.openairlib.net; Noise collector, /www.

freesound.org/people/NoiseCollector/packs/7917; Acoustic

mirror impulses www.sonycreativesoftware.com/download/impulses
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Fig. 2: Performance of the classifiers on non-attacked signals.

MFCC/LMSC feature vector); FUS 1 (classifier performing

fusion at the feature level) and FUS 2 (classifier based on fu-

sion at measurement level).

Forensic analysis The classification systems were evaluated

on the N = 196 speech signals of the dataset, using a random

sub-sampling validation. The dataset was randomly split into

a sub-set of N − K elements over which the classifier was

trained; and a sub-set of K elements, used as validation data;

we selected K = 14. The sub-sampling has been repeated for

1000 realizations. For each realization we computed the True

Positive Rate (TPR) and the True Negative Rate (TNR), i.e.

the percentage of correct classifications of the outdoor and in-

door representatives, respectively. We also computed the ac-

curacy, i.e., the percentage of correct classifications. The av-

erage results are shown in Fig. 2. All the systems exhibit high

TPRs and TNRs, whose respective average values are 86.5%
and 96.5%. Among the threshold-based methods (RAT and

LOLL), the latter achieves the best accuracy (87.6%). The

feature-based classifier (FEAT) outperforms the two former

algorithms, approaching an accuracy of 97.6%. Fusion at fea-

ture level, (FUS 1), is the most effective strategy, leading to a

further increase of the accuracy (97.8%). Fusion at measure-

ment level (FUS 2) improves the accuracy of threshold-based

classifiers, but is less effective than feature-level fusion.

Anti-forensic analysis We are now interested in evaluating

the effect, on the proposed classifiers, of malicious attacks

to the speech recordings. The testing was performed sepa-

rately on the two manipulated datasets (outdoor-to-indoor and

indoor-to-outdoor attacks) described in Section 4, following a

leave-one-out approach. In particular, for each attacked sig-

nal to be classified, the classifiers were trained on the origi-

nal (non-manipulated) dataset, from which the corresponding

non-attacked signal had been removed.

The results of the outdoor-to-indoor attacks are reported

in Fig. 3-(a), which shows the success rate (i.e., the percent-

age of wrong classifications) as a function of the RT60 of the

impulse response used for altering the signals. As described

in Section 4, we distinguish two versions of the same attack:

one following the complete manipulation scheme (continu-

ous lines in Fig. 3-(a)); the other skipping the dereverbera-

tion step (dashed lines). We first observe that, for most of

the algorithms (RAT, LOL, and FUS 2), the success rate of

the attack depends on the reverberation time. In these cases,

the attack reveals to be successful only for RT60 ≥ 3 s. Be-

low this threshold, the forensic analyst still have chances of
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Fig. 3: Success rate of the attacks.

correctly identifying the class of the signal, especially when

the RAT and LOLL techniques are adopted. The FUS 1 and

FEAT algorithms present a different behavior, being constant

for all the considered RT60 values. However, they represent

opposite situations: while for FUS 1 the attack is always suc-

cessful (≈ 100%), the FEAT method reveals to be the least

attackable algorithm (≈ 40% success rate). Comparing the

two approaches for accomplishing the attack, we generally

observe a slight increase of the success rate when the dere-

verberation stage is bypassed. This can be explained since, in

these cases, the attacked signals are characterized by the ef-

fect of two impulse responses (the original and the additional

ones), leading to longer reverberant tails.

We now focus on the indoor-to-outdoor attack. As be-

fore, we consider the two versions of the manipulated dataset

described in Section 4: one obtained by duly following the

scheme in Fig. 1; and the other obtained bypassing the convo-

lution operation. The results relative to the first manipulated

dataset are reported in Fig. 3-(b). We observe that, as in the

outdoor-to-indoor case, we can define two groups of classi-

fiers: RAT, LOLL, and FUS 2, whose behaviors depend on

the reverberation time; FEAT and FUS 1, which maintain a

constant success rate. However, in this scenario FUS 1 repre-

sents the least attackable algorithm, with a very low success

rate (< 7%); while FEAT turns out to be more attackable,

with a success rate of ≈ 59%. It is worth noticing that, in gen-

eral, the indoor-to-outdoor attack is more challenging than the

converse type of manipulation. This is not unexpected, since

blind dereverberation represents a hard task, and it does not

provide a complete removal of the reverberant tail. For this

reason, the success rate tends to diminish as the RT60 of the

new impulse response increases (particularly for RAT, LOLL,

and FUS 2). Indeed, the residual indoor reverberation left by

the non-ideal dereverberation is mixed with that of the new

outdoor response, causing the attacked signals to be more re-

verberating than expected. Lastly, we analyze the effect of the

convolution stage in performing the indoor-to-outdoor attack.

When the convolution step is bypassed, we observe an aver-

age increase of the attack success rate of about 7%. In other

words, bypassing the convolution facilitates the attacker, as it

partially mitigates the non-ideality of dereverberation.

Finally, we consider an experiment aimed at resembling

a real scenario, where the analyst has no a-priori informa-
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Fig. 4: Performance of the classifiers in presence of attacks.

tion about the type of the attack (if any) conducted on the

signals. The classifiers were tested over a test set contain-

ing both unaltered and attacked signals, performing a random

sub-sampling validation. The classifiers were trained over

N −K = 196− 14 unaltered signals. Then, they were tested

over a mixed set, composed of the remaining K unaltered

signals and K attacked ones, randomly chosen from the two

manipulated datasets. The procedure has been repeated 1000
times. The results are summarized in Fig. 4. We observe

that the FEAT classifier achieves the best accuracy (74.6%),

followed by FUS 1 (69.9%). FEAT is well balanced between

TPR and TNR; FUS 1 exhibits the highest TNR (91.8%), but

a very low TPR (47.9%). It is worth noticing that this scenario

is very conservative for the analyst perspective, since pristine

and attacked signals are equally distributed in the dataset. In

practice, we expect only a small percentage of audio content

to be manipulated, since this can successfully accomplished

only by experts who have signal processing expertise and a

good knowledge of the classifiers used. However, even this

difficult scenario guarantees high accuracy, making the FEAT

and FUS 1 algorithms useful for authentication purposes.

Discussion In the light of the results reported in the previous

paragraphs, we can draw some final considerations consider-

ing the two scenarios under analysis. From the analyst per-

spective, the best choice is the FEAT algorithm, which guar-

antees high accuracy and a moderate robustness against at-

tacks. FUS 1, despite its high accuracy, exhibits a poor TPR

(< 50%). This is due to the fact that outdoor-to-indoorattacks

are always successful in this case. Therefore, solely in case of

some a-priori knowledge about the kind of attack (i.e., if only

indoor-to-outdoor attacks are expected), FUS 1 allows the an-

alyst to prevail over the adversary with very high probability.

From the anti-forensic perspective, the adversary can assume

that the FEAT algorithm is the most likely to be adopted by

the analyst. In this case, the success rate is ≈ 40% for the

outdoor-to-indoor attack. For the indoor-to-outdoor case, the

attacker has more chances (≈ 59%) to cheat the analyst when

the manipulation is performed considering both the derever-

beration and convolution stages in Fig. 1.

6. CONCLUSIONS

We presented a forensic and anti-forensic analysis of several

indoor/outdoor speech classifiers. The experimental evalua-

tion has proved the effectiveness of the proposed systems in

classifying unmodified signals. The anti-forensic analysis re-

vealed that the success rate of the attack is dependent from

the specific classifier adopted by the analyst. A detailed anal-

ysis of the results allowed us to identify the algorithm that

jointly maximizes the accuracy and minimizes the success

rate of both indoor-to-outdoor and outdoor-to-indoor attacks.

The future developments will focus on investigating how the

outputs of the classifiers could be fused to improve the overall

robustness against malicious manipulations of data.
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