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ABSTRACT

Exemplar-based feature enhancement successfully exploits a

wide temporal signal context. We extend this technique with hy-

brid input spaces that are chosen for a more effective separation of

speech from background noise. This work investigates the use of

two different hybrid input spaces which are formed by incorporating

the full-resolution and modulation envelope spectral representations

with the Mel features. A coupled output dictionary containing Mel

exemplars, which are jointly extracted with the hybrid space exem-

plars, is used to reconstruct the enhanced Mel features for the ASR

back-end. When compared to the system which uses Mel features

only as input exemplars, these hybrid input spaces are found to yield

improved word error rates on the AURORA-2 database especially

with unseen noise cases.

Index Terms: coupled dictionaries, automatic speech recognition,

modulation envelope, non-negative matrix factorization

1. INTRODUCTION

One of the biggest issues the current state-of-the-art automatic

speech recognition (ASR) systems face is the degradation in per-

formance due to added background noise. So in order to improve

noise robustness, most of the ASR systems employ some mechanism

which attempts to enhance the speech features by removing these

artefacts. Most of these mechanisms, like spectral subtraction [1],

vector Taylor series [2], etc., work on spectro-temporal representa-

tions spanning a few tens of milli-seconds of the speech recording.

In this work, we focus on feature enhancement using non-negative

matrix factorization (NMF) using ”exemplars” which span hundreds

of milli-seconds of the recorded data.

Spectral factorization methods based on NMF attempt to decom-

pose the features extracted from a noisy recording as the weighted

sum of speech and noise dictionary atoms or exemplars, and are

found to be useful for noise-robust ASR [3–5]. Most of the conven-

tional exemplar-based ASR systems use exemplars extracted from

feature spaces like the Mel [6], Gabor [7], DFT (refers to the magni-

tude of the discrete-Fourier transform throughout this paper) [8] etc.,

to obtain the compositional model and enhance the corresponding

features. These enhanced features are then used to find the enhanced

Mel-frequency cepstral coefficients (MFCCs) to be fed to the ASR

back-end.

The efficiency of an exemplar-based NMF approach depends on

the ability of the chosen exemplar space in differentiating features

originating from speech and noise, and it is found that different ex-

emplar spaces yield different performance depending on the type of
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added noise and signal-to-noise ratio (SNR) levels [9]. It is also no-

ticed that, apart from increasing the computational complexity, us-

ing higher dimensional exemplars derived from feature spaces like

the DFT [8], or modulation envelope spectra (MS) [9, 10], etc. will

result in too detailed modelling of the seen noise cases to generalise

well for the unseen noise cases.

In order to address the issues faced by the higher dimensional

features and to combine the speech and noise separation properties

of different feature spaces, we propose the use of hybrid input spaces

to obtain the decomposition. To reconstruct the Mel estimates from

this, a variant of the coupled dictionary approach described in [9]

is used. In this setup, the exemplars for the coupled hybrid input

and the Mel output dictionaries are extracted from the same piece

of training data. Then for evaluation, the underlying Mel features

are reconstructed using the coupled Mel dictionary, following the

decomposition in the hybrid input space.

To obtain a hybrid input space, two feature spaces are chosen

first which are called as primary and secondary feature spaces. A

hybrid exemplar is then obtained by concatenating the exemplars

belonging to these feature spaces that are extracted from the same

piece of training data. In this work, the Mel space is chosen as the

primary feature space for its reduced dimensionality and good sepa-

ration capabilities [9, 11] with the DFT or MS representation as the

secondary feature space.

To address the ”curse” of large dimensionality of the chosen sec-

ondary spaces, we propose to use a trimmed secondary exemplar

space to be concatenated with the full length primary space exem-

plar. The trimmed exemplar is obtained by reshaping only a sub-

set of the feature frames belonging to the secondary feature space.

The decomposition obtained with such a hybrid space will thus rely

mainly on the primary feature space with the trimmed secondary

space acting as a cue to regularise the separation.

The simulation results obtained on the AURORA-2 database re-

vealed that, even with the secondary space trimmed down to a single

frame, both the hybrid input spaces yield improved performances in

terms of word error rate (WER) over the baseline system which uses

Mel features only. The computational complexity of the proposed

approach is also found to be comparable to that of the baseline sys-

tem as trimmed secondary spaces are used.

2. METHOD

2.1. Feature enhancement using NMF

NMF-based compositional models attempt to decompose the fea-

tures extracted from a noisy recording as a sparse non-negative

weighted sum of speech and noise atoms or exemplars stored as

columns in a speech and noise dictionary denoted as As and An,

respectively. Exemplars are extracted from training data spanning
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Fig. 1. Block digram overview of the proposed system using hybrid

input spaces and coupled dictionaries for Mel feature enhancement.

multiple, say T , frames to capture temporal dynamics, followed by

reshaping to form a vector. The representation for the noisy utter-

ance in the exemplar space, Ψ, the columns of which are obtained

by reshaping sliding windows of length T frames along the length

of the utterance [11], is decomposed to get the activations, X, as:

Ψ ≈
ˆ

As An

˜

»

Xs

Xn

–

= AX s.t. X ≥ 0. (1)

The approximation is done such that it minimizes the cost function,

C = DKLD(Ψ‖AX) + Λ⊙ X (2)

where, DKLD is the element-wise Kullback-Leibler divergence

DKLD(x‖y) = x log(x/y) − x + y (3)

and Λ is the sparsity penalty on the activations X [6]. ⊙ denotes

element-wise multiplication. The frame-wise speech and noise esti-

mates, ŝ and n̂ are then obtained after removing the windowing ef-

fect by adding the frames belonging to the overlapping windows in

the windowed estimates AsXs and AnXn, respectively. A frame-

level Wiener-like filter is then obtained after element-wise division

as, W = ŝ ⊘ (ŝ + n̂), which when applied to the noisy features

yields enhanced features.

2.2. Proposed method using hybrid input spaces

In the proposed approach, the activations X
hyb are obtained using

the dictionary A
hyb =

ˆ

A
hyb
s A

hyb
n

˜

, which contains exemplars be-

longing to a hybrid input space, using the NMF approach explained

in Section 2.1. The windowed Mel speech and noise estimates are

then reconstructed using the coupled Mel dictionary, which contains

coupled exemplars belonging to the Mel feature space, as A
mel
s X

hyb
s

and A
mel
n X

hyb
n , respectively. Notice that the corresponding atoms in

the coupled dictionaries, Ahyb andA
mel, are extracted from the same

piece of training data which guarantees a reliable reconstruction of

the underlying speech and noise estimates in the Mel domain [9,12].

The proposed approach is summarised in Figure 1. The nota-

tions used to explain the test phase are: Ψ
hyb for the noisy speech

represented in the hybrid exemplar domain and [Y]∗ denotes the ma-

trix obtained after removing the effect of overlapping windows in the

windowed observation Y. All matrix divisions should be considered

element-wise.

To obtain the hybrid input exemplars, the primary and secondary

exemplars are created first from the same piece of training data span-

ning T frames. Let TS be the trimming operator which trims an ex-

emplar spanning T frames down to an exemplar spanning a subset

S ⊆ {1, 2, . . . , T} of the T frames. Thus, from an exemplar with

frames indexed from 1 through T , the trimming operator TS selects

only the frames with index contained in S, and reshapes them into a

vector.

Data
(T frames)

Primary Exemplar
Representation

Secondary Exemplar
Representation

A†

A‡

βTS{·}

Concatenate
Hybrid Space
Exemplar

Fig. 2. Block diagram overview of the processing chain used to ob-

tain the proposed hybrid exemplar representation.

The trimmed secondary exemplars are obtained by applying TS

on the secondary exemplars, which are also scaled with β to bal-

ance its contribution on obtaining the separation. These trimmed

and scaled secondary exemplar is then concatenated with the corre-

sponding primary exemplar to get the hybrid representation. Thus,

the hybrid exemplar representation for noisy speech Ψ
hyb and the

hybrid dictionary can be expressed as : Notice that, the proposed

approach is equivalent to minimizing the cost function

Ψ
hyb =

»

Ψ
†

βTSΨ
‡

–

and A
hyb =

»

A
†

βTSA
‡

–

(4)

where, the superscripts † and ‡ denote the primary and secondary

exemplar spaces, respectively. The cost function in this setting thus

can be expressed as:

C′ = DKLD(Ψhyb‖Ahyb
X

hyb) + Λ ⊙ X
hyb

= DKLD

„ »

Ψ
†

βTSΨ
‡

–‚

‚

‚

‚

»

A
†

βTSA
‡

–

X
hyb

«

+ Λ ⊙X
hyb

= DKLD(Ψ†‖A†
X

hyb) + βDKLD(TSΨ
‡‖TSA

‡
X

hyb) + Λ ⊙ X
hyb

using (4) and since the cost function being element-wise. It can thus

be seen that the secondary space in effect acts as a regularisation to

obtain the activations and β acts as the regularisation weight.

3. DESCRIPTION OF INPUT SPACES

The various input spaces which are chosen to evaluate the proposed

approach along with the chosen baseline systems are described in

this section.

3.1. Mel, DFT and MS only baselines

For a fair evaluation and completeness, three single-input space

baseline systems which uses the Mel, DFT and MS representations

respectively are evaluated and compared first. All these systems

are evaluated using the coupled Mel output dictionary approach

depicted in Figure 1 with the hybrid exemplars replaced by the Mel,

DFT and the MS exemplars, respectively.

Mel baseline: This system uses the Mel exemplars, which are cre-

ated by reshaping the Mel-integrated magnitude spectra of acoustic

data spanning T frames. The decomposition of the noisy data ex-

pressed in the Mel exemplar domain is obtained using the Mel dic-

tionary, Amel = [Amel
s A

mel
n ]. The Wiener filter for the noisy Mel

enhancement is found using the procedure explained in Section 2.1.

Also notice that these dictionaries act as the primary exemplar space

dictionaries also for the proposed hybrid approach.

DFT baseline: For this setup, the coupled DFT and the Mel dic-

tionaries are obtained first, with the DFT and Mel exemplars ex-

tracted from the same piece of training data. To obtain a DFT exem-

plar, magnitude spectrogram of a training data spanning T frames

is reshaped to a vector. For evaluation, the DFT exemplar represen-

tation of the noisy data is decomposed using the DFT dictionary,
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test set A test set B Average

Experiments clean 20 15 10 5 0 -5 20 15 10 5 0 -5 Exec. time

Mel Baseline 0.2 1.5 1.9 3.7 5.0 11.6 27.6 1.3 1.6 4.4 9.0 26.7 57.9 5.8 s

DFT Baseline 0.1 0.9 1.9 2.7 7.2 17.2 33.3 0.6 1.6 6.3 14.2 35.1 67.8 12.2 s

MS Baseline 0.0 0.7 1.3 1.9 4.4 12.5 30.5 0.5 1.7 5.1 11.2 34.8 69.0 10.8 s

Table 1. WER in % obtained for various baseline systems as a function of SNR in dB evaluated on a subset of 100 files per test set of the

AURORA-2 database. The average execution time per utterance required by the setting is also shown.

A
dft = [Adft

s A
dft
n ]. The activations thus obtained, Xdft are then ap-

plied on to the coupled Mel dictionary to get the speech and noise

estimates for noisy Mel enhancement (ref. Section 2.2).

MS baseline: The MS representation was proposed as part of a

computational model for human hearing which relies on the low fre-

quency amplitude modulations within various frequency bands [13]

which are called modulation envelopes. Let B be the number of fre-

quency bands considered. The MS representation for acoustical data

is obtained by taking the short-time Fourier transform (STFT) of the

modulation envelopes corresponding to each frequency band [14].

For non-negativity, only the magnitude of the STFT is considered.

Because of the low-pass filtering operation, only very few lower

bins of the MS will contain significant energy and it is possible to

truncate each of the MS to the lowest b bins [15]. All these truncated
MS of size b×T each are then stacked to obtain a matrix of size (B ·
b) × T which are referred to as MS features [9]. The MS exemplars

are then obtained by reshaping the MS features which are stored in

the MS Dictionary, AMS = [AMS
s A

MS
n ]. The MS baseline system

is then evaluated using the coupled dictionary approach explained

in Section 2.2 with the decomposition obtained in the MS exemplar

space.

3.2. Hybrid input spaces: Mel-DFT and Mel-MS spaces

In this work, we investigate the Mel-DFT and Mel-MS hybrid

spaces. For this, the Mel, DFT and MS exemplars are created first

as explained in Section 3.1 from the same piece of data spanning

T frames. The trimmed secondary exemplars are then created, by

applying TS on the DFT and MS exemplars, which are also scaled

with β1 and β2, respectively. These are then concatenated with the

corresponding Mel exemplar (ref. Section 2.2) to get the hybrid

Mel-DFT and Mel-MS exemplar representations, respectively.

During testing, for every sliding window of length T along the

length of the noisy utterance, the Mel and the secondary exemplar

representations are obtained. The secondary exemplar representation

is then trimmed using TS and scaled, followed by concatenating with

the Mel exemplar representation to be stored as columns in Ψ
hyb.

4. EVALUATION EXPERIMENTS

4.1. Experimental setup

For evaluation, test sets ’A’ and ’B’ of the AURORA-2 corpus

which contains utterances of digits from ’0-9’ and ’oh’ are used.

The training set of the corpus is composed of 8440 clean speech

utterances and 6768 noisy utterances which are corrupted by four

additive noises (subway, babble, car and exhibition hall). Test set

A contains 4004 clean utterances which are divided into four equal

subsets to obtain the noisy utterances corrupted by the noise types

present in the training data at varying SNRs (20, 15, 10, 5, 0 and -5

dB) leading to 24 noisy subsets. Test set B also contains the same

number of subsets but corrupted with four other (unseen) noise types

(restaurant, train station, street and airport). The WERs obtained

after taking the average over the four noise types for clean speech, -5

dB and the combined average of results obtained for SNRs ranging

from 20-0 dB are presented.

The noise data required to obtain the noise exemplars are cre-

ated from the noisy training set using the two step procedure ex-

plained in [6]. The clean and the noise samples are pre-processed by

removing the dc component and applying pre-emphasis with filter

coefficient 0.97. The exemplars for the Mel, and the trimmed DFT

and MS spaces are then created using the steps explained in Sec-

tion 3. To extract the coupled exemplars, random pieces of training

data spanning 300 ms were used. No supervision was done to avoid

the overlap between the chosen random pieces of data or to avoid

silence. Then, for each of the chosen random piece of training data:

1. To obtain the Mel exemplars, the DFT of the chosen random piece

of training data was first obtained using a window length and hop

size of 25 ms and 10 ms respectively with 128 frequency bins within

the Nyquist frequency (4 kHz), leading to a DFT representation of

size 128 × 30. This is then Mel-integrated with B = 23 channels.

These frame-level Mel features of size 23 × 30 thus obtained are

then reshaped to obtain a Mel exemplar of length 690.

2. To obtain the DFT exemplar, the DFT representation obtained in

Step 1 is reshaped to a vector (of length 3, 840).

3. To obtain the MS feature representation, the data is first split

across B = 23 frequency channels using the equivalent rectangu-

lar bandwidth filter banks implemented using Slaney’s toolbox [16].

Each of these is then half-wave rectified and low-pass filtered at a 3

dB cut-off frequency of 30 Hz to obtain the modulation envelopes.

The modulation spectra for each channel is then found by taking the

STFT of each of these envelopes with a window length of 64 ms and

hop size 10 ms. With the sampling frequency of 8 kHz and STFT

with 128 bins within the Nyquist frequency, each of the spectra was

truncated to b = 5 bins and are stacked to get the MS features [9]

of size 115 × 30. The MS exemplar representation is then obtained

after reshaping the MS features to a vector of length 3, 450.

For evaluation, the coupled dictionaries A
mel, A

dft and A
MS

were created with 10000 speech and noise exemplars each. The

hybrid input space dictionaries were then created as explained in

Section 3.2 for different choices of S, β1 and β2. During testing,

the corresponding exemplar space representations of the noisy data,

Ψ, were obtained as explained in Section 3 using the settings given

above. The NMF-based decomposition was obtained with 600 mul-

tiplicative updates with sparsity constraint. A sparsity penalty of 1.5
for speech and 1 for noise exemplars as in [17] were used for all

the evaluated decompositions except for the MS and DFT baselines,

both of which used 1.75 and 0.75 respectively as in [9].

For the ASR back-end, a GMM-HMM based decoder using

MFCC features was used. Each digit in the HMM topology was

described by 16 states together with 3 silence states resulting in a

total of 179 states. The GMM models were trained on the MFCCs

obtained from the clean training data and enhanced noisy training

data using the respective front-ends (referred to as retraining), with

13 static features along with their velocity and acceleration coeffi-
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test set A test set B

S β1 clean (20-0) -5 (20-0) -5

Mel Baseline 0.4 5.2 28.0 9.2 59.4

Hybrid Mel-DFT space

{1} 0.5 0.4 5.0 27.6 9.3 59.9

{1} 0.2 0.4 4.9 27.1 9.2 60.1

{15} 0.2 0.4 5.1 27.8 9.4 60.4

Switching 0.2 0.3 4.7 26.6 9.0 59.7

Table 2. WER in % obtained as a function of SNR in dB on the

AURORA-2 database for the hybrid Mel-DFT space approach. The

results obtained for various choices of S and β1 are given.

cients leading to a 39 dimensional feature space. The GMM for each

of the HMM state was modelled using 32 Gaussians with diagonal

covariance.

4.2. Comparison between the baseline systems

To reduce the experimentation time, we compare the three chosen

baseline systems evaluated on a subset of 100 files per test set which

is tabulated in Table 1. It can be seen that for test set A, the Mel

baseline performs better at lower SNRs and as the SNR increases,

higher dimensional features yield better separation than the Mel fea-

tures resulting in improved WERs. The higher dimensionality of

these features results in poorer modelling of the unseen cases which

explains their inferior performance for test set B. Also notice that the

MS and DFT baseline settings are computationally expensive which

is almost twice that of the Mel baseline setting.

The different baseline streams were also found to yield com-

plementary results which can also benefit the hybrid input space

approach. For the remaining part of this paper, the Mel exemplar

system is chosen as the baseline for its good performance, lower di-

mensionality and also being the primary input space for the hybrid

setup.

4.3. Parameters for the hybrid Mel-DFT space

With the baseline system chosen as the Mel exemplars only case,

which is the same as the primary exemplar space chosen for the pro-

posed hybrid spaces, the effectiveness of the proposed approach re-

lies on the optimal choices of S and β. These are the two parameters

which decide on the contribution of the secondary feature spaces on

regularising the speech and noise separation resulting from the Mel

baseline system. This section details the analysis of the hybrid Mel-

DFT space for different choices of S and β1 which is summarised in

Table 2.

As the minimum choice, the effect of using the secondary DFT

spaces with |S|=1 are investigated. As a pilot experiment, the effect

of the first DFT frame i. e., S = {1} with β1 = 0.5 is investigated,

which resulted in marginal performance improvement over the Mel

only system. The optimum value of β1 to get the best separation was

then found to be 0.2 after doing a grid search in the range [0.05, 0.5]
on a subset of 100 files per noise type . The S = {1} system with

tuned β1 is then evaluated over the complete test set which con-

firmed the effectiveness of the secondary DFT space in significantly

improving the recognition results.

With the middle frame more correlated with the other frames in

the given temporal context of 30 frames, the choice of S = {15}
was supposed to be more effective as it can be a better representative

of all the DFT frames compared to the first DFT frame. However,

on the contrary, the simulation experiments yielded inferior perfor-

mance when compared to the S ={1} case.

. . . . . .. . .

0 T/2 WW − (T/2)

T1 T(T/2) TT

. . . . . .. . .

. . . . . .. . .

A1X1

≈

A2X2

≈

A3X3

≈

DFT/MS Exemplar
Representation

Mel Exemplar
Representation

Noisy
speech

X = [X1 X2 X3]

Fig. 3. Block diagram overview of the proposed switching approach

to obtain the activations.

An analysis of the S = {1} and S = {15} cases revealed that

such a fall in performance can be attributed to the reshaping oper-

ation when considering multiple frames (here, T = 30) to obtain

the exemplar space representation of the noisy test utterance Ψ
hyb

(ref. Section 2). For the utterances in which the speech onset hap-

pens before the 15th frame, S = {15} system was found to fail

in detecting the speech onset resulting in a substitution or deletion.

To address this and to capture the effectiveness of the middle DFT

frame, a switching system which chooses the set S adaptively along

the length of the utterance is proposed.

The proposed switching approach is depicted in Fig. 3. As ex-

plained in Section 2, the noisy utterance is first converted to the pri-

mary and secondary exemplar space representations by means of a

sliding window spanning T frames along the length of the utterance.

Let W be the total number of resulting sliding windows. In the

switching approach, for the first and the last T/2 sliding windows

of the utterance we use the secondary exemplar with S = {1} and

S={T} respectively, and S={T/2} for all the remaining windows

falling in the middle. Thus we need to use three different dictionar-

ies (A1, A2 and A3) depending on the choice of S in this setup,

and the resulting activations are concatenated to obtain the overall

activations as X = [X1 X2 X3]. It can be seen from Table 2 that

the assessment of the proposed approach yielded improved WERs

over all the other investigated setups.

The performance improvement over the baseline system can be

attributed to the inclusion of a secondary feature space which can

regularise and improve the speech and noise separation. Also notice

that the secondary space is not required to span the entire temporal

context considered per exemplar to obtain a significant improvement

in separating speech from noise.

4.4. Comparison of Mel-DFT and Mel-MS spaces

A comparison between the systems using the proposed hybrid input

spaces is presented in this section. To obtain the Mel-MS results,

the switching setup is used with a β2 = 0.1 which was found after a

grid search same as in Section 4.3. Table 3 summarizes the evaluated

results.

It can be seen that both the proposed approaches yield statis-

tically significant (p < 0.01) improvement in performances when

compared to the Mel baseline system for both seen and unseen noise

cases. Also notice that a significant 16% relative WER improvement

is obtained on test set B SNR(20-0), suggesting that the proposed

approach can mitigate the effects of unseen noise cases as well. In-

clusion of the MS space as a secondary space was found be more

effective when compared to the DFT space. This can be attributed

to the better speech and noise separation properties of the MS fea-
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test set A test set B

Experiments clean (20-0) -5 (20-0) -5

GMM trained on clean data

Mel Baseline 0.4 5.2 28.0 9.2 59.4

Mel-DFT space 0.3 4.7 26.6 9.0 59.7

Mel-MS space 0.3 4.7 27.2 8.8 59.2

GMM trained on enhanced noisy data

Mel Baseline 0.8 2.9 23.0 7.4 55.5

Mel-DFT space 0.6 2.8 22.2 6.5 53.3

Mel-MS space 0.5 2.7 21.2 6.2 52.3

Table 3. WER in % obtained for various approaches as a function

of SNR in dB on the AURORA-2 database.

tures when compared to the DFT features, with noise having a differ-

ent modulation frequency content from speech which was observed

in [9, 10].

It was also observed in [9] that the MS features can perform well

only for the seen noise cases as the MS features lead to more accurate

representation of speech and noise, which will not generalise well

for the unseen noises. But in the proposed approach, it is found that

using trimmedMS exemplars as secondary features can be beneficial

for unseen noises also.

The average execution times per utterance are tabulated in Table

4. It can be seen that the hybrid exemplar space yields an improved

performance at a comparable computational complexity.

5. CONCLUSION AND FUTUREWORK

In this work, we presented an exemplar-based feature enhancement

method for ASR using hybrid input spaces and coupled dictionaries.

The use of hybrid spaces was found to yield improved recognition

accuracies over the baseline system. This paper also presents an ef-

fective way of combining multiple input spaces by means of an adap-

tively trimmed secondary exemplar representation without much in-

crease in the computational complexity. The trimmed representation

is also found to be effective in reducing the effects of overtraining to

seen noise cases and generalises better to unseen noise cases when

compared to full length exemplar representations.

Further, possibly adaptive, feature dimensionality reduction and

its effect on reducing overfitting are to be investigated. Another fu-

ture work is to study the effect of the number of noise exemplars and

sparsity penalties in modelling unseen noise cases.
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