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ABSTRACT

Super-resolution consists in recovering the fine details of

a signal from low-resolution measurements. Here we con-

sider the estimation of Dirac pulses with positive amplitudes

at arbitrary locations, from noisy lowpass-filtered samples.

Maximum-likelihood estimation of the unknown parameters

amounts to a difficult nonconvex matrix problem of struc-

tured low rank approximation. To solve it, we propose a new

heuristic iterative algorithm, yielding state-of-the-art results.

Index Terms— Dirac pulses, sparse spike deconvolution,

super-resolution, structured low rank approximation

1. INTRODUCTION AND PROBLEM

FORMULATION

Recently, analog signal reconstruction from discrete measure-

ments has been extended, from the classical paradigm rooted

in Shannon’s work, to a large class of signals ruled by parsi-

monious nonlinear models [1, 2]. Here, we focus on the em-

blematic problem, sometimes referred to as super-resolution

[3] of estimating a set of Dirac pulses, a.k.a. spike train or

Radon measure, from noisy bandlimited samples or, equiva-

lently, from low frequency Fourier coefficients [1, 3, 4]. This

problem has a wide range of applications, including ultra-

wideband communications and ultrasound imaging [5]. Let

τ be a positive real and let the integer K ≥ 1 be the known

number of spikes. We introduce the torus T = R/τZ, which

is the interval [0, τ [ with 0 and τ identified, and the Dirac

mass distribution δ(t). The unknown signal to estimate is

s⋆(t) =

K
∑

k=1

a⋆kδ(t− t⋆k), ∀t ∈ T, (1)

where the (t⋆k)
K
k=1 are the distinct locations in T and the

(a⋆k)
K
k=1 are the positive amplitudes (the star indicates an un-

known quantity). The goal is to obtain estimates of these

2K parameters from the available data, which consists

of noisy bandlimited measurements (yn)
N−1
n=0 , of the form

yn =
∫ τ

0 s⋆(t)ϕ(nτN − t)dt+εn, where the sampling function

ϕ(t) =
(

sin(Nπt/τ)
)

/
(

Nsin(πt/τ)
)

is the Dirichlet kernel

and the εn ∼ N (0, σ2) are independent random realizations

of Gaussian noise. We suppose that N is odd and we set

M = (N − 1)/2. We also suppose that M ≥ K , a necessary

and sufficient condition to make perfect reconstruction of

s⋆ possible from the data in absence of noise using Prony’s

method, see Sect. 2.

The novelty of the present work, with respect to the pre-

vious work of the authors [4] and related works, is that the

amplitudes a⋆k are supposed positive, a constraint which is

physically grounded, if the pulse amplitudes correspond to

an intensity of light or current over a zero-energy floor. Con-

sequently, an estimation method must return estimates of the

amplitudes, which are positive as well.

If we apply the discrete Fourier transform (DFT) to the

sequence (yn)
N−1
n=0 , we obtain N consecutive lowpass Fourier

coefficients of s⋆. One can show [4] that they take the form

ŷm =
K
∑

k=1

a⋆ke
−j2πmt⋆

k
/τ + ε̂m, ∀m = −M, . . . ,M. (2)

Thus, maximum likelihood (ML) estimation of the parameters

amounts to solving the nonlinear least-squares problem [4]

minimize
(tk)

K

k=1
∈ T

K

(ak)
K

k=1
∈ ]0,+∞[K

1
2

M
∑

m=−M

∣

∣

∣

∣

∣

ŷm −
K
∑

k=1

ake
−j2πmtk/τ

∣

∣

∣

∣

∣

2

. (3)

So, we are faced with a spectral estimation problem [6]. Solv-

ing it exactly is intractable, since the cost function has a mul-

timodal shape with a combinatorial number of local minima

and a narrow trough around the global minimum [7]. When

N ≫ K and the locations t⋆k are not too close to each other,

classical spectral estimation techniques like MUSIC or ES-

PRIT can be used [6]; they are fast but statistically subop-

timal: contrary to ML estimation, they do not achieve the

Cramér-Rao bounds when the noise level tends to zero [4].

In addition, there is no guarantee that the returned estimates

of the amplitudes are positive.
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In Sect. 2, we formulate ML estimation of the parame-

ters as structured low rank approximation of a Toeplitz ma-

trix built from the data. The proposed algorithm to solve this

problem is presented in Sect. 3. Experimental results illus-

trate its efficiency in Sect. 4.

2. REFORMULATION OF ML ESTIMATION AS A

MATRIX DENOISING PROBLEM

To reformulate ML estimation of the parameters in a form

more amenable to numerical computation, we introduce

the linear operator Toep, which maps a sequence or vec-

tor (xm)Mm=−M with Hermitian symmetry (i.e. x−m = x∗
m)

to a square Hermitian Toeplitz matrix:

Toep : (x−M , · · · , xM ) 7→







x0 · · · x−M

...
. . .

...

xM · · · x0






. (4)

Then, a fundamental result is:

Carathéodory’s theorem [8]: Let T be a Hermitian positive

semi-definite Toeplitz matrix of size (M +1)× (M +1) and

rank K (we have 1 ≤ K ≤ M ). Let x = (xm)Mm=−M be

such that T = Toep(x); that is, the xm are the elements on

the diagonals of T. Then, there exist unique (up to a permu-

tation over the index k) sequences (tk)
K
k=1 ∈ T

K , (ak)
K
k=1 ∈

]0,+∞[K , such that xm =
∑K

k=1 ake
−j2πmtk/τ , for every

m = −M . . . ,M .

Thus, Toep defines a one-to-one mapping between a positive

sum of complex exponentials and a Toeplitz, positive semi-

definite, low rank matrix. Moreover, there is a simple pro-

cedure, due to Prony [1, 9], to find the parameters of such a

matrix T:

1) Re-arrange the elements xm of T in a Toeplitz matrix

TK of size (N −K)× (K +1) (we have N = 2M +1) and

rank K , as

TK =













x−M+K · · · x−M

...
. . .

...
...

. . .
...

xM · · · xM−K













. (5)

2) Compute the right singular vector h = [h0 · · · hK ]T

of TK corresponding to the singular value zero (the smallest

singular value in practice).

3) Compute the roots (zk)
K
k=1 of the polynomial

∑K
k=0 hkz

k.

Then the locations (tk)
K
k=1 are given by tk = τ

2π arg[0,2π[(zk).

4) Given the locations, the vector a = [a1 · · · aK ]T of

the amplitudes is obtained by solving the least-squares linear

system

UHUa = UHx, (6)

where ·H is the Hermitian transpose, x = [x−M · · · xM ]T,

U =







ej2πMt1/τ · · · ej2πMtK/τ

...
...

...

e−j2πMt1/τ · · · e−j2πMtK/τ






. (7)

We can note that, in absence of noise, applying this ex-

traction procedure with x = ŷ yields perfect reconstruction

of the parameters (t⋆k)
K
k=1 and (a⋆k)

K
k=1. Also, in presence of

noise, given estimates of the locations, the ML estimates of

the amplitudes are given by (6), with x replaced by ŷ.

So, by virtue of Carathéodory’s theorem, the ML estima-

tion problem (3) can be rewritten as

minimize
x∈CN

1
2‖x− ŷ‖22 s.t. rank(Toep(x)) ≤ K and

Toep(x) < 0, (8)

where < 0 denotes positive semi-definiteness. Since there is

a one-to-one correspondence between x and T = Toep(x),
we can rewrite (8) as the structured low rank approximation

(SLRA) problem

minimize
T∈H

1
2‖T− Toep(ŷ)‖2w s.t. T is Toeplitz

and rank(T) ≤ K and T < 0, (9)

where H is the real Hilbert space of Hermitian matrices of

size (M + 1) × (M + 1) and the squared weighted norm

‖ · ‖2w is such that ‖x − ŷ‖22 = ‖Toep(x) − Toep(ŷ)‖2w;

that is, ‖A‖2w =
∑M+1

i=1

∑M+1
j=1 wi,j |ai,j |2, where wi,j =

1/(M + 1 − |i − j|). So, (9) can be viewed as a matrix de-

noising problem: the matrixToep(ŷ), or equivalently the data

ŷ, is denoised by finding the closest matrix consistent with

the model structure, from which the parameter estimates are

extracted by Prony’s procedure. The SLRA formulation (9)

has advantages over the parametric form (3); first, there is no

initialization issue, as the noisy matrix Toep(ŷ) is a natural

initial estimate of the solution. Second, for a low noise level,

an algorithm converging to a local solution will actually find

the global solution, as we observe in practice.

SLRA problems have many applications, but due to the

nonconvexity of the rank constraint, they are very hard [10,

11]. Several methods have been proposed in the literature to

obtain a local solution of a SLRA problem, see references

in [10] and [4]. To our knowledge, the only efficient publicly

available software package for SLRA is the one currently in

development by I. Markovsky [12]. However, it only handles

real data, whereas the matrices in (9) are complex-valued. In

the next section, we propose a new algorithm, which is simple

to implement and efficient. In the remainder of this section,

we present two alternatives proposed in the literature to ap-

proximately solve the estimation problem.
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Fig. 1. Plot in log-log scale of the MSPE (left subplot) and the neg-log-likelihood (right subplot) for Experiment 1: the signal s⋆

consists of K = 2 spikes, at locations (0.42,0.52) (τ = 1), with amplitudes (1,1). The data consists of N = 11 low-frequency

samples. The values are averaged over 104 noise realizations.

2.1. A Convex Relaxation of the SLRA Problem

An alternative is to replace the nonconvex problem (8) by its

convex surrogate

minimize
x∈CN

1
2‖x− ŷ‖22 + λx0 s.t. Toep(x) < 0, (10)

for some regularization parameter λ > 0. Indeed, from the

decomposition of the solution x as a positive sum of expo-

nentials: xm =
∑K′

k=1 ake
−j2πmtk/τ , ∀m = −M, . . . ,M ,

we get that x0 = tr(Toep(x))/(M + 1) =
∑K′

k=1 ak is the

atomic norm of x [13]. The main advantage of this formula-

tion is that (10) is a strongly convex semi-definite program, so

that many efficient optimization algorithms exist to compute

its unique solution. But it is difficult to tune the parameter λ
and there is no guarantee that K ′ = K . We leave for future

work the performance evaluation of this approach and the dif-

ficult theoretical question of how the minimal separation on

the locations, the CRB, the SNR, N and K are related, for

the solutions of (9) and (10) [14–17].

2.2. Cadzow Denoising

The simple heuristic method of alternating projections, a.k.a.

Cadzow denoising [18], is sometimes used by practitioners to

solve approximation problems with two constraint sets, by al-

ternating projection onto them. It is promoted in [1,5] for the

reconstruction of Dirac pulses. Applied to the problem (9),

and in the notations of the next section, T(0) = Toep(ŷ) and

T(l+1) = PΩ2

(

PΩ1
(T(l))

)

, where l is the iteration counter.

In practice, this algorithm seems to always converge to a ma-

trix satisfying all the constraints. But it does not yield even a

local solution of the problem (9), since there is no cost func-

tion minimized by this simple procedure. In Sect. 4, we use

as stopping criterion ‖T(l+1)−PΩ1
(T(l))‖F < 1e-12, where

‖ · ‖F is the Frobenius norm.

3. A NEW OPTIMIZATION ALGORITHM FOR SLRA

Let us first consider the generic optimization problem:

minimize
z∈Z

F (z) s.t. z ∈ Ω1 ∩ Ω2, (11)

where Z is a real Hilbert space, Ω1 and Ω2 are two closed

subsets of Z , and F : Z → R is a convex and differentiable

function with β-Lipschitz continuous gradient, for some β >
0; that is, ‖∇F (z) − ∇F (z′)‖ ≤ β‖z − z′‖, ∀(z, z′) ∈ Z2.

The algorithm proposed by the first author [19] to solve this

problem is:

Proposed optimization algorithm. Choose the parameters

µ > 0, γ ∈ ]0, 1[, such that 2γ > βµ, and the initial estimates

z(0), v(0) ∈ Z . Then iterate, for every l ≥ 0,
∣

∣

∣

∣

z(l+1) = PΩ1

(

v(l) + γ(z(l) − v(l))− µ∇F (z(l))
)

,

v(l+1) = v(l) − z(l+1) + PΩ2
(2z(l+1) − v(l)).

If the sets Ω1 and Ω2 are convex, the algorithm can be shown

to converge to a solution of (11) under mild assumptions [19].

Then, we recognize that the SLRA problem (9) takes the

form of (11), with Z = H and the following correspondence:

• Ω1 is the subset of H of positive semi-definite ma-

trices of rank ≤ K . The projection PΩ1
(A) =

Q diag(d′)QH onto this set, with respect to the Frobe-

nius norm, of a matrix A = Q diag(d)QH, is obtained

by truncating its eigendecomposition: the eigenvalues

in d′ are obtained by setting all except the K largest

nonnegative elements (if any) of d to zero.

23rd European Signal Processing Conference (EUSIPCO)

461



• Ω2 is the linear subspace of H of Toeplitz matrices. The

projection PΩ2
consists in replacing the elements of a

same diagonal by their average.

• The cost function is F (A) = 1
2‖A − Toep(ŷ)‖2w, so

that ∇F (A) = W ◦ (A − Toep(ŷ)), where ◦ is the

entrywise product and W is the matrix with the wi,j

as elements. The Lipschitz constant of ∇F is β =
max({wi,j}) = 1.

In absence of convexity of the low-rank constraint set

Ω1, the algorithm is used as a heuristic, without conver-

gence guarantee. In practice, we set µ = 1.3, γ = 0.51µ,

z(0) = v(0) = Toep(ŷ). The stopping criterion is ‖z(l+1) −
PΩ2

(z(l+1))‖F < 1e-12, and the solution estimate output by

the algorithm is PΩ2
(z(l+1)). In this setting, the algorithm

was found to almost always converge to a local solution of

(9). In very rare cases, when the noise level is high, the al-

gorithm enters a cycle and does not converge. In such case,

decreasing the values of µ and γ is sufficient to ensure con-

vergence. This behavior was already observed in [4], but in

the present context, the absence of convergence is even more

rare, so that the additional constraint T < 0 in (9) seems to

add further robustness to the algorithm.

4. EXPERIMENTAL RESULTS

The proposed algorithm is compared with Cadzow denoising,

the function rootmusic of Matlab implementing a variant

of MUSIC [20], and the matrix pencil method [21]. Since

these two last methods are not guaranteed to give spikes with

positive amplitudes, once the locations are found, the am-

plitudes are obtained by replacing the least-squares solution

(6) by the non-negative least-squares solution, computed with

the lsqnonneg command of Matlab; since such amplitudes

can be zero, the method can fail to return K distinct spikes

with positive amplitudes. To compare the methods, we must

choose a way to quantify the estimation error between the true

unknown signal s⋆ and its estimate. When all the amplitudes

a⋆k are equal, it is possible to evaluate the error on the loca-

tions by finding the best assignment between the true spikes

and their estimates. This is the case in the first experiment

with K = 2 spikes, so that we define the mean squared peri-

odic error (MSPE) min
(

(t1 − t⋆1)
2
τ +(t2 − t⋆2)

2
τ , (t1 − t⋆2)

2
τ +

(t2 − t⋆1)
2
τ

)

/2, where (x)τ =
(

(x + τ
2 ) mod τ

)

− τ
2 . The

advantage of this error criterion is that we can compute the

corresponding Cramér–Rao bound (CRB), like in [1]. In the

general case, since our target is ML estimation, we can simply

compare the value of the neg-log-likelihood, which is the cost

function in (3), (8) and (9), achieved by the different methods.

The first experiment consists in estimating K = 2 spikes

of same amplitude; the results are reported in Fig. 1. The pro-

posed method is the only one to achieve the CRB for a signal-

to-noise ratio (SNR) (equal to 10 log10(‖ŷ − ε̂‖22/‖ε̂‖
2
2))
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Fig. 2. Plot in log-log scale of the neg-log-likelihood for Ex-

periment 2, see the details in Fig. 3.

larger than 10dB, which shows that it computes the ML

estimate in this regime.

In the second experiment, K = 6 and N = 25; the re-

sults are reported in Figs. 2 and 3. Here also, the proposed

algorithm outperforms the other methods.

We note that root-MUSIC and the matrix pencil method

are noniterative, whereas Cadzow denoising and the proposed

algorithm have a cost per iteration dominated by one eigen-

decomposition, with complexityO(M3). Matlab code imple-

menting the different methods and used to generate the figures

is available on the webpage of the first author.

5. CONCLUSION

We proposed a new nonconvex formulation, based on struc-

tured low rank approximation, for maximum-likelihood esti-

mation of a spike train, with arbitrary locations and positive

amplitudes. We also proposed a heuristic optimization algo-

rithm to solve this problem, which is simple to implement,

fast, and efficient: it finds the global solution in practice,

when the noise level is below some threshold. The perspec-

tives for future work include the performance study in case of

missing samples and other pulse shapes than the ideal Dirac

spike. We will also investigate the properties of the convex

relaxation of the problem.
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