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ABSTRACT
This paper presents a novel method to solve for the

challenging problem of acoustic Room Impulse Response
estimation (RIR). The approach formulates the RIR estima-
tion as a Blind Channel Identification (BCI) problem and
it exploits sparsity and non-negativity priors to reduce ill-
posedness and to increase robustness of the solution to noise.
This provides an iterative procedure based on a reweighted
l1-norm penalty and a standard l1-norm constraint. The
proposed method guarantees the convexity of the problem
at each iteration, it avoids drawbacks related to anchor
constraints and it enforces sparsity in a more effective
way with respect to standard l1-norm penalty approaches.
Experiments show that our approach outperform current state
of the art methods on speech and non-speech real signals.

Index Terms— Room Impulse Response, Blind System
Identification, Sparsity, Non-negative Priors, TDOA Estima-
tion

I. INTRODUCTION
The estimation of the Room Impulse Response (RIR) is a

problem at the basis of several applications in signal process-
ing and providing remarkable theoretical challenges for the
community. The computation of the RIR [1] or the closely
related reverberation time [2], is the fundamental step for
different applications such as room geometry reconstruction
[3], [4], [5], [6], [7], room aware sound reproduction [8],
speech enhancement [9], and dereverberation [10]. Since the
emitting audio source is often unknown, RIR estimation is
formulated as a Blind Channel Identification (BCI) problem
with two main procedures. The first relies on the specific
source statistics [11] while the second uses the diversity of
multiple channels given different spatial locations where the
audio signal is acquired [12], [13].

The first approach has a series of requirements, the main
one involving long acquisition times to build up the statistic
and the presence of stationary sources that often limits its use
to custom real environments. The second approach avoids
these drawbacks since it relies on the implicit properties
of the RIR using, in its simplest form, the cross-relation
identity in a Single Input Multi Output (SIMO) system that
can be easily formulated as an eigenvalue problem [12]. This

formalization of the problem has been extended in several
ways in order to provide more robustness and to reduce the
a priori information required for the solution [14], [15], [16].

In this paper we propose a novel formulation that aims
at further improving the accuracy and robustness of RIR
estimation by devising a novel iterative optimization strategy.
The key features of our method are the elimination of strong
constraints related to previous approaches (e.g. the anchor
constraint [14], [15]) and the ability to promote sparsity
and non-negativity to increase robustness and accuracy.
Moreover, each iteration of the proposed method results in a
convex problem easily solvable with quadratic programming
techniques. The experimental tests based on synthetic and
real acoustic signals (both speech and non-speech) compare
favorably to our approach, achieving superior performance
in respect to the state of the art.

The next Sec. II presents the formalisation of RIR estima-
tion as an optimization problem together with the details of
previous approaches. Sec. III proposes our method formali-
sation and optimization strategy. Experimental results in Sec.
IV shows the performance of several methods compared to
ours while Sec. V concludes with further considerations.

II. PROBLEM STATEMENT
Let us consider M microphones in a room and let us

define hi(k) as the discrete time RIR from a single source
to the i-th microphone. The signal xi(k) received at micro-
phone i can be written as the discrete convolution between
the transmitted signal s(k) and the i-th RIR such that:

xi(k) =

L∑
l=1

hi(l)s(k − l), i = 1, · · · ,M (1)

where L is the channel length. The BCI problem aims at
recovering hi(l) for every i and l without knowing the
transmitted signal s(k). A family of methods is based on
the cross-relation identity for which, in absence of noise,
xi(k)∗hj(k) = xj(k) ∗hi(k) for every couple of i, j where
∗ denotes convolution. This principle is used in [12] by
introducing a least squares minimization of the squared cross
relation error as:

min
h

J(h) s.t. ‖h‖22 = 1, (2)
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with
J(h) =

∑
i 6=j

‖Xihj − Xjhi‖22 (3)

where hi = [hi(1), . . . , hi(L)]
>, Xi is the Toeplitz matrix

whose first row and column are given by [xi(k − N +
1), xi(k − N), . . . , xi(k − N − L + 2)] and [xi(k − N +
1), xi(k−N+2), . . . , xi(k), 0, . . . , 0]

> respectively, with N
being the signal length, and h = [h>1 , . . .h

>
M ]>. The unitary

constraint on the l2-norm of h is needed to avoid the trivial
zero solution. Furthermore, by rearranging the matrices Xi,
it can be shown that J(h) is a quadratic form of h, i.e.
J(h) = h>Qh, where Q is an ML × ML positive semi-
definite matrix. Thus, the solution to the above minimization
problem is given by the singular vector corresponding to
the smallest singular value of Q [12]. Unfortunately there
are underlying assumptions to this formalisation that are
not easily verified in a real situations. In particular, the
channels have to be co-prime; hence their length L has to be
known in advance. This information is not available in real
situations and if the channel length is wrongly estimated, the
problem is ill-conditioned and therefore highly sensitive to
environmental noise.

This method has been subsequently improved exploiting
the a priori knowledge of the RIR shape. To this end, the
RIR can be modelled as a sequence of pulses, each one
corresponding to the direct path and/or a reflection from a
wall with positive amplitude coefficients [17]. Hence, spar-
sity [14], [16] and non-negativity [15] have been imposed
to improve robustness. Even if the sparsity assumption may
not hold for the ”tail” of the RIR, applications concerning
environment geometry [3], [4], [5], [6], [7], [8] require
just the recovery of lower order reflections, i.e. the sparse
portion of the RIR. Likewise, applications concerning speech
enhancement [9] and derevereberation [10] have proven to
work under the sparse RIR assumption.

In [16] a sparsity inducing l1-norm penalty was added
to the quadratic cost function J(h), yielding the following
minimization problem under the l2-norm equality constraint:

min
h

J(h) + λ‖h‖1 s.t. ‖h‖22 = 1. (4)

In general, it is well known that l1 penalty is used in
a wide range of problems as a surrogate of the more
suited but computationally intractable l0 penalty. Even if,
under opportune hypotheses, the two norms yields equivalent
solutions in terms of sparsity, this is not true in general: the
main reason is that larger coefficients are penalized more
heavily than smaller coefficients, whereas l0 norm penalizes
all non-zero coefficients in the same manner [18].

Moreover, the problem in Eq. (4) is affected by two
fundamental drawbacks. First, the domain of the problem
is non-convex due to the quadratic equality constraint, so
making the minimization of J(h) prone to local solutions.
Second, if the signal spectrum contains “holes”, i.e. in the

likely case where we have no white noise signals, we might
have a weighting of the power spectrum by zero or very
small values. This is a subtle but disruptive effect, since
the additional energy constraint given by the l2-norm may
overstress frequency components related to holes in the
spectrum since these will contribute little in the cost function.

To address these issues, a single anchor constraint can be
used to substitute the l2-norm one [14] giving:

min
h

J(h) + λ‖h‖1 s.t. |h1(a)| = 1, (5)

where a is the anchor index that has to be chosen greater than
the maximum of the differences k̃i − k̃1 over i = 1, · · · ,M
where k̃i is the index of the first non zero entry of the channel
i. The single anchor constraint makes the problem convex
[19] and less sensitive to noise in respect to the l2-norm
constraint as in [14]. However, the anchor constraint together
with the l1-norm penalty leads generally to an amplitude
distortion in the first channel reconstruction, by placing an
overly enhanced peak at sample a.

A further constraint has been exploited in [15] where the
non-negative properties of the RIR [17] are included in the
cost function leading to:

min
h
J(h) + λ‖h‖1 s.t. h1(a) = 1, h ≥ 0 (6)

where h > 0 means h(l) > 0 for l = 1, . . . , L. Non-negative
constraints provide increased robustness to noise by further
regularizing the problem, as explained in [20] and [21].

III. PROPOSED METHOD
To solve the drawbacks related to the anchor constraint in

Eqs. (5) and (6), we introduce a l1-norm equality constraint.
In this way, all the channel elements are equally taken into
account without privileging the one corresponding to the
anchor:

min
h
J(h) + λ‖h‖1 s.t. ‖h‖1 = 1, h ≥ 0. (7)

At the same time, differently from the l2-norm constraint,
the problem remains convex. Unfortunately, setting such l1-
norm equality has the undesired side effect of hampering
the sparsity inducing property of the l1 penalty: if the same
l1 term appears both as a penalty and as a constraint,
the penalty becomes a constant that does not influence
the argument of the minimum of the cost function. As a
consequence, no term remains to promote sparsity since the
l1 constraint is not able per se to impose it. This effect
can be intuitively seen, looking at the two-dimensional toy
problem depicted in Fig. 1 where h ∈ <2. Here, in absence
of measurement noise, let the exact sparse solution be at
h(1) = 0, h(2) = 1 for which J(h) = h>Qh = 0,
under the l1 constraint ‖h‖1 = 1. However, due to noisy
measurements, the matrix Q becomes full rank and the corre-
sponding family of ellipses are non-degenerate and with axes
not aligned to the canonical basis of h. As a consequence, the
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(a) (b) (c) (d)

Fig. 1. Toy example: the blue line represents the l1 equality constraint, while the red line represents respectively: (a) quadratic
cost function, (b) quadratic cost function plus l1 penalty, (c) weighted l1 penalty, (d) quadratic cost function plus weighted
l1 penalty.

solution to the problem min
h
J(h) s.t. ‖h‖1 = 1, h ≥ 0

without penalties, is non sparse, as can be seen in panel Fig.
1(a). The inclusion of a l1 penalty modifies the shape of
the cost function, but does not improve the sparsity of the
solution (Fig. 1(b)).
To counter this problem, let us suppose to know in advance
that the exact solution has h(2) > h(1). We can compensate
for the influence of the magnitude of h elements on the
l1 penalty, introducing a weighted l1 penalty, ‖p � h‖1,
where the two elements p(i) of the weight vector p are
such that p(2) < p(1) and � denotes the Hadamard product.
The resulting weighted penalty is displayed in Fig. 1(c). By
adding such weighted l1 penalty to the quadratic term, we
obtain a cost function pinched toward the h(2) component
and so a sparse solution equal to the exact one (Fig. 1(d)).
From this intuition, we propose to solve a sequence of
z = 1, · · · , Z minimization problems of the form:

ĥ
(z)

= min
h
J(h)+λ‖p(z)�h‖1 s.t. ‖h‖1 = 1, h ≥ 0,

(8)
where p(z) is a L × 1 weight vector. Notice that each
problem is convex and solvable with quadratic programming
techniques [19]. At each iteration, the weight vector p(z) is
updated as the inverse of the solution of the problem at the
previous step (z − 1) giving:

p(l)(z) =
1

ĥ(l)(z−1) + ε
for l = 1, · · · , L (9)

where p(l)z and ĥ(l)(z−1) denote the l-th element of p(z)

and ĥ
(z−1)

respectively and ε is a regularization parameter
useful to avoid numerical instability, typically set at some
orders of magnitude lower than the expected values of non-
zero elements of ĥ

(z−1)
. Concerning the algorithm starting

guess ĥ
(0)

, we adopt the solution provided by Eq. (6),
i.e. the standard l1 penalty with anchor and non-negativity
constraints. Even if such initialization does not assure a very
sparse solution, still the elements of ĥ

(0)
corresponding to

zero entries in the exact solution will be lower than the other
elements. Hence, in the subsequent steps, such elements will
be more penalized by the weighted l1, yielding increasingly

sparser solutions, as it can be seen by looking at the three
iterations in the example displayed in Fig. 2. Also note that
the real channel is not perfectly non-negative since the Dirac
pulses, corresponding to the walls reflections, typically fall
off the grid of samples resulting in sinc functions. Despite
this slight mismatch between theoretical assumptions and
real data, the position of the estimated peaks reproduces
the positions of the ground truth peaks with remarkable
precision1. Moreover the energy of each reflection is fairly
preserved by the proposed method by enhancing the peaks
corresponding to off-the-grid reflections, as can be observed
comparing the first estimated peak (on the grid reflection)
with the second, third and fourth (off the grid reflections).

When the solution converges, i.e. ĥ
(z)
≈ ĥ

(z−1)
, the

Fig. 2. Example of the iterative process for our proposed
approach with SNR = 9 dB.

weighted l1 norm becomes equivalent to the l0 norm,
as p(l)(z)ĥ(l)(z) ≈ 1 for non-zero entries of ĥ

(z)
and

1A further mismatch is given by the finite wall dimension that makes
the image method of [17] not accurate at low frequencies. However, this
effect can be reduced by using a high-pass filtering of the signals at the
microphones.
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p(l)(z)ĥ(l)(z) ≈ 0 for zero entries. This fact contributes to
explain the superiority of weighted l1 in inducing sparsity,
with respect to its unweighted counterpart.

IV. EXPERIMENTS
The proposed algorithm, named Iterative L1 Penalty

(IL1P), was evaluated against the eigenvalue decomposi-
tion (EIG) [12] and the non-negative l1-norm method [15]
(L1NN) through a set of 50 Monte Carlo simulations with
realistic signals. The experimental setup is given by a rect-
angular room of 6× 5× 4 m with microphones and sources
position generated at each trial according to a uniform
distribution. To avoid configurations in which the source is
too close to the microphones, the x coordinate ranged from
0 m to 2 m for the microphones and from 4 m to 6 m for
the source. The number of microphones was fixed to 2 and
4. The RIRs were simulated according to the image method
[17] assuming a reflection coefficient from the walls of 0.8.
Simulations were repeated setting the Signal to Noise Ratio
(SNR) at the microphones to 40 dB, 20 dB, 14 dB 6 dB
and 0 dB. All the parameters (λ, a and ε) were optimized
through cross-validation and the following values were set:
λ = 0.001, a = 150, ε = 10−9. For IL1P, the number of
iterations was set to 3, including the initialization step. In
Fig. 4 an example of the real and estimated channel for the
four methods is displayed, for an SNR of 9 dB. With such
noise, EIG completely fails in reconstructing the signal due
to its extreme noise sensitivity. L1NN provides a reasonable
solution but with very noisy reconstructions showing several
spurious peaks and amplitude distortions due to the anchor
constraint. The best reconstruction is achieved with IL1P:
the spurious peaks have disappeared and almost all the true
peaks are correctly matched both in position and energy. The
quantitative summary of the results over the 50 Monte Carlo
trials is reported in Table 1 for synthetic, non-speech and
speech sources. In each box the first term is the Average Peak
Position Mismatch (APPM ) in samples and the second term,
in square brackets, is the Average Percentage of Unmatched
Peaks (APUP ). These values are both calculated on the peaks
corresponding to direct path and the six 1-st order reflections
from the walls. A ground truth peak has been considered
unmatched if the closest estimated peak is more than 20
samples away from it. In detail, the APPM and the APUP

are calculated as it follows:

Fig. 3. Spectra of non-voice (left) and voice (right) recorded
signal used in the experiments.

APPM =

50∑
i=1

Pi∑
p=1

|τgtp,i − τep,i|
50Pi

APUP =

50∑
i=1

K − Pi

50K

(10)
where τgtp,i and τgtp,i are respectively the p-th ground truth
peak location and its corresponding estimation in samples
for the i− th Monte Carlo trial, Pi is the number of ground
truth peaks for which a matching has been found among the
estimated ones and K is the number of ground truth peaks.
Such metrics allow to decouple the effect of the outliers,
quantified by APUP , from the overall peak position accuracy
expressed by APPM . The matching between ground truth
peaks and estimated ones is performed, for each channel,
using a Nearest Neighbour procedure repeated for each
ground truth peak. EIG definitely fails in recovering the true
peak locations, as can be seen looking at the high peak
mismatching and the high ratio of outliers (Table 1, first
column), substantially independent of the SNR. Differently,
L1NN manages to obtain reasonable results for all the tested
conditions. Evident improvements both in term of APUP and
APPM are achieved by the proposed algorithm for a great
part of SNRs tested. The improvement is particularly evident
for SNRs equal or lower than 20 dB. In just one case, (0 dB,
speech signal) L1NN moderately overcomes IL1P in terms
of APPM ; however this is compensated by the lower number
of outliers (APUP ) given by IL1P.

Similar tests have been run using 4 microphones, again
confirming the overall superiority of IL1P: as an example,
at SNR = 6 dB and with a synthetic signal, the performance
is 0.47 [0.03] for our IL1P and 0.90 [0.09] for L1NN.
Results in general get worse, moving from synthetic to non-
speech and finally to speech, likely due to the progressively
decreasing flatness of the source spectrum (check Fig. 3) that
limits the amount of frequencies available. Nevertheless the
very good performance of the proposed method witnesses
its applicability in noisy environments.

Fig. 4. Results for the four tested methods and ground truth.
SNR = 9 dB. Synthetic source.
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SNR EIG [12] L1NN [15] IL1P
SY

N
T

H
0 dB 4.51 [0.34] 1.96 [0.16] 1.17 [0.11]
6 dB 4.24 [0.34] 0.77 [0.10] 0.40 [0.04]

14 dB 3.86 [0.31] 0.34 [0.03] 0.28 [0.01]
20 dB 3.42 [0.30] 0.28 [0.03] 0.27 [0.01]
40 dB 3.20 [0.28] 0.26 [0.00] 0.27 [0.00]

R
E

A
L

0 dB 4.53 [0.39] 2.46 [0.18] 2.23 [0.14]
6 dB 4.50 [0.37] 1.29 [0.12] 0.54 [0.02]

14 dB 3.82 [0.38] 0.39 [0.02] 0.28 [0.00]
20 dB 3.65 [0.35] 0.29 [0.01] 0.28 [0.00]
40 dB 3.31 [0.29] 0.28 [0.00] 0.28 [0.00]

SP
E

E
C

H 0 dB 4.66 [0.38] 2.87 [0.23] 3.31 [0.16]
6 dB 4.91 [0.37] 1.96 [0.19] 1.36 [0.08]

14 dB 4.44 [0.40] 0.98 [0.10] 0.58 [0.01]
20 dB 4.30 [0.35] 0.50 [0.04] 0.39 [0.01]
40 dB 3.64 [0.35] 0.32 [0.01] 0.29 [0.00]

Table I. Monte Carlo simulations for different sources.

V. CONCLUSIONS
The proposed method has proven to increase the accuracy

of RIR estimation in respect to state of the art methods,
in challenging realistic conditions. Future work will test the
benefits of the method when applied to applications such as
room reconstruction [7] and microphone localisation [22].
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