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ABSTRACT

Representing a complex acoustic scene with audio ob-
jects is desirable but challenging in object-based spatial audio
production and reproduction, especially when concurrent
sound signals are present in the scene. Source separation
(SS) provides a potentially useful and enabling tool for audio
object extraction. These extracted objects are often remixed
to reconstruct a sound field in the reproduction stage. A
suitable SS method is expected to produce audio objects that
ultimately deliver high quality audio after remix. The perfor-
mance of these SS algorithms therefore needs to be evaluated
in this context. Existing metrics for SS performance evalu-
ation, however, do not take into account the essential sound
field reconstruction process. To address this problem, here
we propose a new SS evaluation method which employs a
remixing strategy similar to the panning law, and provides a
framework to incorporate the conventional SS metrics. We
have tested our proposed method on real-room recordings
processed with four SS methods, including two state-of-the-
art blind source separation (BSS) methods and two classic
beamforming algorithms. The evaluation results based on
three conventional SS metrics are analysed.

Index Terms— Spatial audio, audio objects, blind source
separation, beamforming, evaluation

1. INTRODUCTION

Spatial audio provides immersive spatial information about,
e.g. where the sound sources are and how reverberant the
environment is. Conventional spatial audio systems are of-
ten channel-based, where the auditory scene is represented
by channel signals, which are transmitted to a specific repro-
duction system (e.g. a 5.1 loudspeaker array) to reconstruct
the sound field. However, channel-based spatial audio lacks
adaptivity to different reproduction systems, individual pref-
erence and listening environments. An emerging alternative
to address the above limitations is object-based spatial audio,
in which the auditory scene is represented by audio objects,
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with each audio object containing an audio stream as well as
associated metadata [1]. A typical audio stream is a sound
source, and the metadata describes properties of the sound
source and the acoustic ambience, e.g. the 3D position of the
sound source and the reverberation level of the environment.
At the rendering (reproduction) stage, to reconstruct a sound
scene, these audio objects are mixed down based on the re-
production system setup as well as the metadata. A listener
may interact with the listening environment by manipulating
the metadata.

An essential step in object-based spatial audio produc-
tion is to represent the audio scene in terms of audio ob-
jects. This is challenging in real-room environments when
there are concurrent sound signals. Source separation (SS)
techniques can be applied to address this audio object sepa-
ration problem, and there are many SS frameworks available.
For instance, blind source separation (BSS) based on statisti-
cal cues such as mutual independence of sound sources [2] or
spatial cues [3, 4]; beamforming methods [5, 6] based on the
propagation model of sound signals; computational auditory
scene analysis (CASA) [7] based on human auditory percep-
tion mechanisms.

A key question to ask is, however, whether these SS
techniques offer sufficient quality for object representation
in spatial audio production and reproduction. Conventional
SS evaluation is a well-studied area, where it is common to
evaluate the separated spatial images of an audio mixture, as
investigated in the SiSEC source separation evaluation cam-
paign [8]. The following performance metrics are often used:
signal-to-noise ratio (SNR)-based metrics such as (frequency-
weighted) segmental SNR [9], weighted spectral slope mea-
sure [10], and signal to interference/artefact/distortion ra-
tio (SIR, SAR, SDR) [11]; linear predictive coding (LPC)-
based evaluations such as log-likelihood ratio (LLR) [12]
and Itakura-Saito (IS) distance; auditory-motivated percep-
tual evaluation metrics such as perceptual evaluation of
speech/audio quality (PESQ [13], PEAQ), PEMO-Q and
perceptual evaluation methods for audio source separation
(PEASS) [14, 15].

In spatial audio, however, the aim is to evaluate the qual-
ity of the reconstructed sound field, where the sources (audio
objects) extracted via SS methods are manipulated and mixed
down. Using the performance metrics mentioned above may
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Fig. 1. Framework of the proposed SS evaluation method for
object-based spatial audio. The conventional SS framework
is highlighted in the shadowed area.

not be able to truly assess the quality of the produced spa-
tial audio. For instance, the quality of the separated sources
may not be good enough in terms of the evaluations using the
above metrics, but when they are remixed for spatial audio
reproduction, the perceptual quality of the generated spatial
sound may well be satisfactory. Therefore, to evaluate the
performance of an SS algorithm in this context, an alternative
metric is required. To this end, we propose a new method by
comparing the remix of the separated sources (SS remix) with
the ground truth remix from the original sources (reference
remix). This strategy is similar to the amplitude panning law
used for stereo sound. The previously-mentioned SS evalua-
tion metrics are integrated into this method. More details of
our method are introduced in the next section.

2. THE PROPOSED EVALUATION METHOD

We first introduce the framework of conventional source sep-
aration assessment. Take a 2 × 2 system as an example, the
two original sources are denoted as s1(n) and s2(n), and their
mixture is denoted as x(n). A SS method is applied to x(n)
to obtain two source estimates ŝ1(n) and ŝ2(n). To evaluate
the performance of the SS method, ŝi(n) is directly compared
with si(n)(i = 1, 2) using existing SS evaluation metrics, as-
suming that si(n) is known as a reference for performance
evaluation. This framework is highlighted in the shadowed
area in Figure 1.

In spatial audio, we aim to reconstruct a sound field with
a high quality, where the separated audio objects are likely
to be mixed down using different rendering techniques such
as stereo, surround, high order ambisonics (HOA) [16] and
wave field synthesis (WFS) [17]. Object-based spatial au-
dio has the advantage of interactive listening, e.g., the listener

can focus on one particular sound by turning up its volume
and suppress the interfering sound. To evaluate the quality
of the reconstructed sound field, a new SS evaluation method
is proposed in this context, as shown in Figure 1. First we
generate a new mixture (SS remix) to model the rendering
process, where each source estimate is amplified and added
together. Using the same remixing process, a reference mix-
ture (reference remix) is obtained. Then the SS remix and the
reference remix are compared using conventional SS metrics.
Using again the 2 × 2 system as an example, the SS remix is
obtained as A1ŝ1(n)+A2ŝ2(n), s.t. A1+A2 = 1, where Ai

varies between [0, 1]. This strategy is similar to the classic
amplitude panning [18] in spatial audio rendering. The repro-
duced sound field fades from s1(n) to s2(n) by decreasing
A1. When A1 = 1, only the first source estimate is expected
in the sound zone; when A1 = 0.5, two source estimates are
balanced. When A1 = 0 or 1, the assessment is the same as
conventional SS. The proposed scheme is equivalent to con-
ventional methods with a fixed set of (A1, A2). The benefit of
introducing this re-mixing process is to relate the evaluation
directly to what the listener hears when the source gains are
adjusted in a remix. Note that, ŝi(n) is a distorted version of
si(n) that ŝi(n) ≈ wi ∗ si(n) where ∗ denotes convolution,
and wi can be considered as a finite impulse response Wiener
filter with L taps, as in [3]. As a result, when generating
the reference remix, we replace si(n) with its contributions
in ŝi(n), to cope with any short-term distortions and delays,
which contains gain normalisation, time alignment and short-
term coloration from room or microphones.

It is worth noting that gain modification is achieved by
amplitude panning in the proposed method. It would be in-
teresting to evaluate also re-spatialisation of 3D sound (in
MPEG-H, HOA, WFS [1]), especially with compound spatial
audio objects as in [19]. To evaluate the audio object in such
systems, format-specific coding and decoding may need to be
applied to the separated audio objects to obtain loudspeaker
outputs, and to generate the remix from these decoded outputs
considering sound propagation process from these loudspeak-
ers to a specific position.

3. EXPERIMENTS

3.1. SS algorithms

Two BSS algorithms and two classic beamforming algorithms
were used for SS tasks. Both BSS algorithms consider only
time-invariant mixtures, i.e. sound sources are not moving.
The first BSS algorithm, denoted as “Alinaghi” [3], works for
stereo recordings. It is a time-frequency (TF) masking-based
method, where the soft mask is generated based on the fol-
lowing three cues: interaural level difference (ILD), interau-
ral phase difference (IPD) and mixing vectors (MV). A Gaus-
sian mixture model (GMM) is applied to model these features
for deriving the TF mask. The second BSS algorithm is de-
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noted as “Sawada” [4], where the TF mask is estimated based
only on the MV cue. Both BSS algorithms were applied in
the TF domain using 1024-point short time Fourier transform
(STFT). “Alinaghi” initialises the GMM model based on the
time delay estimation from the stereo recordings, then 16 ex-
pectation maximisation (EM) iterations are applied to update
these frequency-dependent GMM parameters in a bootstrap
way. “Sawada” initialises the MV with k-means, and an EM
algorithm is applied to update the MV cues with 50 itera-
tions. Based on inter-frequency dependencies, the permuta-
tion problem is resolved before the time-domain reconstruc-
tion. These chosen parameters as used in [3] give satisfactory
results under various reverberant conditions.

The two classic beamforming methods that we imple-
mented are delay-and-sum (DS) and minimum variance dis-
tortionless response (MVDR) [5,6]. A beamformer requires a
number of spatially distributed microphones, which can steer
its beams to target directions for enhancement. DS depends
on the positions of the microphones and the target sound,
which directly compensates the delay from the target to each
microphone. MVDR is signal dependent, where signal co-
variance estimation is involved for spatial filter calculation.
Both beamforming methods were applied in the TF domain,
with the same 1024-point STFT. When calculating the steer-
ing vector at each frequency bin, we used the ground truth
positions of the sources and the microphone array. The power
covariance was estimated from 200 segments with each seg-
ment lasting 20 ms. To avoid singular matrices, the estimated
power covariance was compensated with an identity matrix
scaled to the largest eigenvalue divided by 50.

3.2. Microphone setup

A 48-channel microphone array and the Cortex Manikin MK2
binaural head and torso simulator (Cortex MK2) were used to
record data, shown in Figure 2, for beamforming and BSS
methods respectively. The microphone array has two circles
with 24 microphones for each, with inner and outer radii of 85
mm and 107 mm respectively. Both the built-in microphones
in the dummy head (NC-MK 231) and those in the micro-
phone array (Countryman B3 Omnidirectional Lavalier) have
smooth frequency responses (< 1 dB variation) in the voice
band 300 Hz to 3400 Hz, which provides fair comparison
for the BSS and beamforming techniques for speech signals.
Besides that, two close microphones (Countryman B3) were
used to record clean sound sources.

3.3. Data and recording setup

The recording room based in University of Surrey has a size
of 244 × 396 × 242 cm, with the reverberation time at about
430 ms. The dummy head stood in the centre of the room
with ear height of 165 cm. The microphone array was hung
on the ceiling, just above the dummy head at the height of
220 cm. Four positions were labelled as A, B, C and D, as

Fig. 2. The Cortex MK2 with built-in microphones at two ears
and the 48-channel two-circular microphone array.
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Fig. 3. Setup for real-room speech recordings. The 48-channel
microphone array was hung right above the dummy head, to
record concurrent speech signals coming from position pairs
(A,B), (A,C) and (A,D).

shown in Figure 3, and their input azimuths relative to the
dummy head are 0◦, 45◦, 90◦ and 135◦ respectively. Two
female speakers were involved for recording data standing
at positions A and B respectively, both reading randomly-
chosen TIMIT sentences continuously for approximately 30
seconds. This process was repeated twice for position pairs
(A,C) and (A,D). Each subject wore a clip-on microphone to
capture the ground truth1. The recorded data were sampled at
16 kHz, which covers the voiced band.

Then the previously introduced BSS and beamforming al-
gorithms were applied to the dummy head mixtures and cir-
cular microphone-array mixtures respectively. After that, our
proposed evaluation method is applied to these source esti-
mates using the framework shown in Figure 1.

3.4. Results and analysis

The remix from the source estimates after SS and the refer-
ence remix from the ground truth were generated by chang-
ing A1 from 0 to 1 with an increment of 0.1. Three different
conventional SS evaluation metrics were integrated into our
framework. The first one is SDR, which calculates the ratio
of contributions from the reference remix to any other dis-
tortion components. The second one is PESQ [13], which is

1Note that, the ground truth is not absolutely clean, since each close mi-
crophone might catch interfering information from the competing speaker.
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Fig. 4. The performance results of the SS algorithms evaluated
by the proposed method. Three conventional SS evaluation
metrics were integrated, which were SDR (row 1), PESQ (row
2) and HASQI (row 3) respectively. The proposed framework
was tested on real-room recordings at three position pairs:
(A,B) in column 1, (A,C) in column 2 and (A,D) in column 3.

auditory-motivated and widely used to evaluate the percep-
tual quality of speech signals. The third one is the hearing
aid speech quality index (HASQI) [20], which copes with
both normal-hearing and hearing-impaired listeners by adapt-
ing the cochlear model. The speech sound quality metric in
HASQI was used, which has two terms: (1) the nonlinear dis-
tortion and (2) the linear distortion, introduced by short-term
and long-term spectrum changes respectively. Direct compar-
ison of the reference remix with a microphone recording from
the dummy head is used as a baseline, denoted as “Mic”.

The quantitative evaluation results are presented in Figure
4. First, we notice that the two BSS algorithms, denoted as
“Alinaghi” and “Sawada”, outperform the two beamforming
algorithms in terms of SDR. In fact, the two beamformers fail
to separate the sound sources, which can be seen by these very
low SDR values at the two ends of these sub-plots in the top
row. In other words, the source components are embedded by
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Fig. 5. Illustration of the two beamforming algorithms en-
hancing sources from the 45◦ azimuth. For the MVDR beam-
former, the mixtures are generated by two concurrent speak-
ers at azimuths 0◦ and 45◦ respectively.

the distortion corruption.
To explore reasons why these beamforming methods fail

to separate sounds, we plotted their directivity patterns when
the target beam direction is 45◦, as shown in Figure 5. Beam
patterns vary at different frequency bins. For the DS beam-
former, the main lobe points exactly to the target direction.
However, the lobe width is big, especially for low frequen-
cies, which means interfering components from the neigh-
bouring directions are not sufficiently suppressed. For the
MVDR beamformer, the beams are much narrower at low fre-
quency bins, and they cross at one point in the target direction.
However, the beam peaks are shifted away from the target di-
rection for the following reason. The inverse of the power
spectrum is complexed-valued, whose multiplication with the
steering vector (from the target direction) results in the shift.

For the top row sub-plots in Figure 4, when the remix-
ing parameter A1 varies from 0 to 1, the SDR curves for BSS
smoothly vary from one end to the other without much fluc-
tuation. Note that, at the two ends, the remix contains infor-
mation from only one source estimate. In other words, source
estimates are compared directly with clean sources without
remixing. From this curve, the quality of the reconstructed
sound field is similar to the quality of the isolated source
estimate. However, the SDR curves for beamforming first
increase and then decrease dramatically. This is reasonable
since the interference residual at each beamforming output
can be partially considered as contributions from the refer-
ence remix after the two outputs are mixed down. In other
words, the residual artefacts are masked by the reference mix.

Comparing the linear distortion measurements in HASQI
(the dash-dot curves in the sub-plots of the bottom row, de-
noted as HASQI-linear) with the SDR results, we notice that
they are consistent for BSS. This is because both SDR and
HASQI-linear evaluate long-term distortions, with SDR on
the signal magnitude in the time domain, and HASQI-linear
on the signal envelope in the frequency domain. However, the
remix advantage that the beamformers show in SDR almost
disappears in HASQI-linear. This is because linear filtering
affects the HASQI-linear measurements, whilst the beam-
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forming methods are essentially linear-filtering techniques.
The soft masking-based BSS algorithms, on the other hand,
are essentially nonlinear filtering techniques and therefore
not affected.

However, SDR is not very consistent with subjective
speech quality evaluations. For instance, if we distort a signal
by slowly lowering its volume, then we will get a very low
SDR result, but the important information within the signal is
not greatly affected. PESQ, the “prediction of the perceived
quality that would be given by subjects in a subjective lis-
tening test” [13], addresses this limitation and gains more
reliable results. We found that the source estimates after
remix yield a better quality in terms of PESQ. Take the BSS
measurement at position (A,B) in column 1 as an example, if
we directly compare the two source estimates with their as-
sociated clean signals, we get the PESQ evaluations of about
2.5 and 2.3 respectively (results at two ends). However, if
we remix them by taking their average (A1 = 0.5), we get
the PESQ result around 3. This phenomenon confirms that
SS might fail to produce satisfactory results, but the recon-
structed sound field from these source estimates may offer
satisfactory perceptual quality. This also verifies that con-
ventional SS evaluation metrics alone do not suffice for the
evaluation of object-based representations.

The nonlinear distortion measurements in HASQI (the
solid lines in the sub-plots of the bottom row, denoted as
HASQI-nonlinear) are consistent with the PESQ results. This
is reasonable since they both evaluate short-term distortions,
with PESQ on the perceptual model representations, and
HASQI on the cochlear model, and both models are auditory-
motivated.

4. SUMMARY

We have proposed a new SS evaluation method in the context
of spatial audio object separation. Source estimates obtained
by SS are mixed down using a strategy similar to the am-
plitude panning law. Then conventional SS evaluation met-
rics are applied to the remixed signals. The proposed frame-
work can be extended to scenarios with more than two sound
sources. Experimental results show that remixed signals have
the potential to deliver a higher quality as compared to the iso-
lated source estimates, due to masking of residual artefacts.
An arising question is what kind of cues should be exploited
to develop new SS methods that deliver a better reconstructed
sound field in a wide range, i.e., the range where we can vary
the value A1 without sacrificing performance. Moreover, spa-
tial quality metering has not been integrated into the proposed
scheme yet. These require further study.
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