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ABSTRACT

We associate an array processing method, called progressive

multi–channel correlation (PMCC), and statistical modelling,

to detect and classify seismic events. PMCC detects any co-

herent wavefront crossing an array of seismometers, includ-

ing the wavefronts not generated by actual seismic events.

We use machine learning techniques to classify the PMCC

detections between ”events” and ”noise”. These techniques

are based on the statistical modelling of features extracted

from the seismic signal. The features we select combine fea-

tures computed directly from the raw signal and features re-

trieved by the PMCC detector. We apply our method on a real

data set from the Songino seismic station, in Mongolia. We

compare the performance of fours classifiers: Gaussian naive

Bayes classifier, logistic regression, Gaussian mixture mod-

els (GMM), and hidden Markov models (HMM). In our case

study, the GMM and the HMMyield the highest performance.

Index Terms— progressive multi–channel correlation,

classification, Gaussian mixture models, hidden Markov

models, seismic monitoring

1. INTRODUCTION

A seismic event releases energy that propagates in the Earth

structure in the form of seismic waves [8]. These seismic

waves can be body waves, traveling through the interior of

Earth, or surface waves. Body waves, which carry most of the

seismic energy, are of two types: primary waves (P-waves)

and secondary waves (S-waves). P-wave are compressional

wave polarized in the propagation direction, while S-wave are

shear waves polarized orthogonally to the propagation direc-

tion. The P-wave speed is approximately 60% higher than the

S-wave speed in the crust and in the mantle. Time pickings of

P-wave and S-wave arrivals from an earthquake in Mongolia

are plotted in Figure 1.

Seismometers monitor the pulse of the Earth. They record

seismic events as well as seismic background noise. Seismic

events can be earthquakes produced by plate tectonics or vol-

canic activity, or they can be related to human activity (quarry

blast, nuclear explosion, etc.). Seismic events create particu-

lar patterns in the signal recorded by the seismometers. De-
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Fig. 1: Earthquake with P-wave and S-wave arrivals recorded

in Mongolia and observed at 307km distance.

tecting and classifying these patterns is a difficult task, which

involves dedicated processing tools as well as an important

amount of human analysis.

In this paper, we use an array processing method called

progressive multi–channel correlation (PMCC) as a detector.

PMCC detects coherent wavefronts crossing a seismometer

array and estimate the propagation parameters, i.e., the prop-

agation direction and velocity. However, PMCC triggers de-

tections even when the wavefront is not generated by an actual

seismic event, e.g., road traffic, avalanche, cracking ice on a

lake, etc. Hence, it is necessary to discriminate the detections

of events and the detections not related to an event, referred

to as ”noise”. For that purpose, we transform the seismic sig-

nal using an adapted feature representation, then we train sta-

tistical models to classify the features between ”event” and

”noise” . We compare the performance of four machine learn-

ing classification techniques: Gaussian naive Bayes classifier,

logistic regression, Gaussian mixture models, hidden Markov

models.

The outline of the paper is as follows. In Section 2, we

describe the PMCC algorithm. In Section 3, we present the

feature representation and the statistical approach that we use

to classify detections as events or noise. We apply our method

in Section 4 on a real dataset from the Songino seismic station
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in Mongolia.

2. ARRAY PROCESSING FOR DETECTION

Progressive multi–channel correlation (PMCC) is an array

processing method designed to detect a coherent wavefront

crossing an array of sensors and to estimate its propagation

parameter, i.e., its propagation direction and speed. PMCC

is used for seismic [4] and infrasound [3] event monitoring.

A comprehensive presentation of the method can be found

in [3] in the infrasound context.

The PMCC algorithm processes multi–channel signals to

compute pixels, which are aggregated in families. A pixel is

computed using the signal of sensors selected from the array

and filtered in a given elementary time–frequency domain.

The correlations between the filtered signals are computed

and time delays are derived from them. A time delay ∆tij is
defined as the difference between the arrival times of a wave-

front at two different sensors i and j. The consistency, defined
as

C =
∑

i<j<k

|∆tij +∆tjk +∆tki|
2
, (1)

is then computed. This quantity is close to 0 when a coher-

ent wavefront is crossing the array (and greater than 0 when

the sensors only record incoherent noise), hence it is taken as

a detection criterion. The consistency is sequentially com-

puted using a growing number of sensors starting from an

initial triplet. The sensors are progressively added as long

as the consistency remains low. At the end of this process,

if the final consistency remains close to 0 and the number

of involved sensors is sufficiently large, the propagation pa-

rameters (azimuth and speed) are computed and stored with

the time–frequency coordinates in the pixel. Starting from a

triplet of sensors with small aperture allows a high detection

rate, while the progressive approach leads to a better estima-

tion of the propagation parameters [4]. Multiple pixels cor-

responding to multiple overlapping time–frequency windows

are independently computed.

The next step of the detection process consists in aggre-

gating pixels with similar attributes into detection families.

The metric between pixels which allows family aggregation

(i.e., pixel clustering) is a weighted Euclidean distance based

on the time, the frequency, and the stored propagation param-

eters. If the number of pixels aggregated in a family is large

enough, a detection is triggered. The propagation parameters

of the detected wavefront are computed by averaging the az-

imuth and speed attributes of the family pixels.

Pixel and family computations are respectively described

in Algorithms 1 and 2.

Algorithm 1 Pixel computation.

input multi–channel signals filtered in time–frequency

window centered at (τ, f)
select triplet of sensors S
compute time delays∆tij for all sensors i,j in S
compute consistencyC from time delays∆tij (see Eq. (1))
while C < ε and |S| < Smax do

∆t′ij ← ∆tij for all sensors i,j in S
C′ ← C
add new sensor to sub-array S
compute time delays∆tij for all sensors i,j in S
compute consistency C from time delays ∆tij (see

Eq. (1))

end while

if C < ε and |S| ≥ Smin then

compute azimuth θ and speed v from time delays∆tij
return pixel (τ, f, θ, v, C)

end if

if C ≥ ε and |S| − 1 ≥ Smin then

compute azimuth θ′ and speed v′ from time delays∆t′ij
return pixel (τ, f, θ′, v′, C′)

end if

3. STATISTICAL CLASSIFICATION

3.1. Feature extraction

The raw data are seismic multi–channel signal segments that

have triggered PMCC detections. To enhance relevant infor-

mation with respect to our classification problem, we extract

feature vectors from this raw data [2]. We select features com-

puted from the seismic signal (standard features), and features

retrieved by the PMCC detector (PMCC features).

For the standard features, the signal from each channel of

the array is filtered in three overlapping frequency bands: low

frequency band [0.8, 3], middle frequency band [1.5, 6], high

Algorithm 2 Family computation.

input multi–channel signals

for all time–frequency domains do

filter signals in the time–frequency domain

run Algorithm 1 on filtered signals

end for

aggregate pixels with similar attributes in families

for all families do

if (number of pixels in family) ≥ Pmax then

trigger detection

compute family azimuth and speed by averaging over

pixels

return families

end if

end for
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frequency band [3, 9] (in Hz). For each channel, three stan-

dard features are computed after filtering in each frequency

band: kurtosis, relative spectral energy, envelope variation

(see Table 1). The feature values are then averaged over the

channels, yielding nine standard features.

Regarding the PMCC features, we select four outputs

from the PMCC detector: estimated wavefront speed, consis-

tency, number of pixels of the detection, ratio of the maximal

and minimal frequencies of the pixels (see Table 2).

For each processed signal segments, we take the logarithm

of each standard and PMCC features and stack them to get a

13-dimensional feature vector.

kurtosis

1

T

∑

t′∈{t±T/2}

(Si
t′ − S̄i

t)
4





1

T

∑

t′∈{t±T/2}

(Si
t′ − S̄i

t)
2





2

where S̄i
t =

1

T

∑

t′∈{t±T/2}

Si
t′

relative spectral energy

∑

fi,k∈[fmin
i

,fmax
i

]

|ct(fi,k)|
2

∑

i

∑

fi,k∈[fmin
i

,fmax
i

]

|ct(fi,k)|
2

envelope variation
∑

t′∈{t±T/2}

|Si,env
t′ − Si,env

t′−1|

Table 1: Standard features computed over the time window

centered at t with length T (for one channel). i = 1, 2, 3
denote low, middle and high frequency bands respectively.

{Si
t}t is the seismic signal filtered in the frequency band

[fmin
i , fmax

i ] and {Si,env
t }t is its envelope. ct(f) is the Fourier

coefficient at frequency f computed over the time window

{t± T/2}.

number of pixels |Ft|

consistency
1

|Ft|

|Ft|
∑

j=1

Cj,t

speed
1

|Ft|

|Ft|
∑

j=1

vj,t

frequency ratio

max
j

fj,t

min
j

fj,t
− 1

Table 2: PMCC features computed over the time window cen-

tered at t with length T . F = {pj}j denote a PMCC fam-

ily and pj = (τj , fj , vj , θj , Cj) denote a pixel (i.e., a vector
containing the time–frequency coordinates, the estimated az-

imuth and speed, and the consistency).

The statistical classifiers we consider in the sequel are

trained using samples of feature vectors.

3.2. Classification and model training

We consider two classes: the ”event” class or positive class,

and the ”noise” class or negative class. A distribution density

of feature vectors (likelihood) is associated with each class.

This density is denoted f1 for the event class and f0 for the

noise class. We associate a feature vector Y (extracted from

a signal segment) with the event class if
f1(Y )

f0(Y )
≥ s, or with

the noise class if
f1(Y )

f0(Y )
< s, where s ∈ R

+ is a decision

threshold [9].

This classification based on a likelihood ratio has a

Bayesian interpretation. Indeed, let c ∈ {0, 1} be the sought
class and let p(·|Y ) be the conditional probability of c with

respect to Y . The maximum a posteriori (MAP) estimator of

c is defined as

ĉ = argmax
c∈{0,1}

{p(c|Y )}.

According to Bayes’ rule,

p(c|Y ) ∝ fc(Y )πc,

where πc is the prior probability of c. Thus, estimating c by
the likelihood ratio is equivalent to estimating c by the MAP

when the decision threshold is s =
π1

π0
=

π1

1− π1
. For exam-

ple, when π0 = π1 = 1/2, which corresponds to a noninfor-

mative uniform prior on the classes, then s = 1.
Since the densities f0 and f1 are unknown, they must

be learned from training data (feature vectors) for which we

know the class. Here, we consider four well-known machine

learning methods:

• Gaussian naive Bayes classification [2, Chap. 8],

• logistic regression [2, Chap. 4],

• Gaussian mixture models (GMM) [2, Chap. 9],

• hidden Markov models (HMM) [7].

In these methods, the unknown densities f0 and f1 are sup-

posed to belong to a parametrized set of densities. Learning

f0 (resp. f1) consists in estimating the parameter such that it

best fits the training data belonging to the noise (resp. event)

class. This is done by maximum likelihood estimation. The

optimization is straightforward for the naive Bayes classifier

and the logistic regression, but it requires an expectation–

maximization algorithm for the GMM [2, Chap. 9] and the

HMM [7].

Among the four methods listed above, the HMM is dif-

ferent because it does not model simple feature vectors, but

feature vector sequences (i.e., multidimensional time series)1.

1In this article we consider HMMs with multidimensional Gaussian ob-

servations and not symbolic observations [7].
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Signal ExtractionPMCC

Feature Computation

Model Training

Fig. 2: Processing flowchart.

Hence, seismic signal segments are transformed into simple

feature vectors when used for naive Bayes, GMM, and lo-

gistic regression, whereas they are transformed into feature

vector sequences for HMMs, using a computation window

sliding over the signal [1, 6].

The overall processing, including the PMCC method and

the statistical model training, is summarized in Figure 2.

4. CASE STUDY

As a case study, we consider the Songino seismic station

in Mongolia, which belongs to the International Monitor-

ing System of the Comprehensive Nuclear-Test-Ban Treaty

Organization2. To built the training data and to assess the

classification performance, we use as ground truth a seis-

mic bulletin provided by analysts from the Research Center

of Astrophysics and Geophysics (RCAG) of the Mongolian

Academy of Sciences. The bulletin contains the P and S-wave

arrival time pickings.

Signal segments corresponding to PMCC detections from

August 25th to August 31st 2008 (seven full days) are ex-

tracted and transformed into feature vectors to constitute the

training data. If the detection matches a seismic wave arrival

from the bulletin, it is associated with the class ”event”. Oth-

erwise, it is associated with the class ”noise”. Training data

are made of 8816 PMCC detections, among which 7721 cor-

respond to noise and only 1095 to events. The class popula-

tion size is thus highly uneven (seven times more noise than

events), which can lead to poor classification performance [5].

The noise class is therefore undersampled to get the same size

than the event class. For the training data, the extraction of

2http://www.ctbto.org/verification-regime/building-theinternational-

monitoring-system/the-future-role-of-theinternational-monitoring-system/

signal segments starts 3s before the arrival time picking and

ends 10s after, so that the extracted segment are 13s long.

To test the four classifiers, we use data from September

1st to September 2nd 2008 (two full days), which were not

used for training. Test data are made of 3916 PMCC detec-

tions (3664 for noise, 252 for events). These detections are

classified as event or noise, and the estimated class is com-

pared with the actual class thanks to the seismic bulletin. For

the test, the arrival time pickings are supposed to be unknown.

Therefore, the extraction of the signal segments is done with

regard to the PMCC detection, and not to the actual arrival

from the bulletin. The extraction starts 3s before the detec-

tion starting time (i.e., min
j

τj with the notations from Table

2) and ends 10s after it.

For HMMs, the feature vectors are computed over a 2.5s
time window sliding with a 0.5s step. Thus, for HMM train-

ing, a 13s-long signal segment is transformed into a sequence

of 21 feature vectors.

ROC curves are displayed in Figure 3 using classification

results on the training data. The GMM and the HMM yield

the best performance regardless of the decision threshold. In

particular, in an operational monitoring perspective, it is more

important not to miss any event than to classify noise as event,

i.e., true positive is preferable than true negative. The naive

Bayes classifier, the logistic regression, the GMM, and the

HMM reach a true positive rate above 99% for a true neg-

ative rate of 59%, 36%, 61%, and 64% respectively. Thus,

the GMM and the HMM get the best performance in this

regard: they attain a high classification performance for the

event class at the price of a moderate loss of performance for

the noise class.

The confusion matrices on the test data are displayed in

Table 3. The highest classification rate for the noise class

is obtained by the logistic regression, but at the price of a

low classification rate for the event class. The GMM and

the HMM exhibit good performance for both classes. The

HMM has the highest classification rate for the event class.

In the results in Table 3, the decision threshold is set to s = 1,
which in Bayesian terms corresponds to the absence of a pri-

ori knowledge about the class.

The GMM and the HMM yield the best performance be-

cause these models are flexible, i.e., they are able to accu-

rately describe various patterns of data. However, recall that

the training of the GMM or the HMM involves an EM algo-

rithm, so that the computation cost is much higher than for

the naives Bayes classifier or the logistic regression.

Lastly, note that the HMM models feature vector se-

quences, whereas the other methods model single feature

vectors. In the HMM, one PMCC detection corresponds to a

feature vector sequence (computed with a short time window

sliding over the signal). In the naive Bayes classification,

the logistic regression, and the GMM, one PMCC detection

corresponds to one feature vector (computed with a fixed

large time window). Thus, the feature data processed by
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the HMM is less ”smoothed” than for the other classifiers,

and it contains more information (but also possibly irrelevant

information with respect to the classification problem).
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Fig. 3: ROC curves (training data).

event noise

event 79 21

noise 5 95

(a) Naive Bayes classifier

event noise

event 72 28

noise 17 98

(b) Logistic regression

event noise

event 84 16

noise 28 97

(c) GMM

event noise

event 87 13

noise 5 95

(d) HMM

Table 3: Confusion matrices (percentage, test data). The ac-

tual class is in line and the estimated class is in column.

5. CONCLUSION

PMCC is an array processing method, which detects coherent

wavefronts crossing a seismometer array. PMCC also trig-

gers a detection for wavefronts not generated by actual seis-

mic events, hence the need to distinguish detections triggered

by actual events from detections not related to an event.

We use machine learning techniques to perform this clas-

sification task. These techniques are based on the statistical

modelling of features extracted from the raw seismic signal.

The features we select are computed directly from the signal

(standard features) or retrieved by the PMCC detector (PMCC

features).

We compare four classifiers: Gaussian naive Bayes clas-

sifier, logistic regression, GMM, and HMM. This compari-

son is performed with a real data set from the Songino seis-

mic station, in Mongolia. The GMM and the HMM yield the

best classification performance. However the likelihood max-

imization for the GMM and HMM involves costly computa-

tional techniques (EM algorithm), whereas it is straightfor-

ward for the naive Bayes classifier or the logistic regression.

This paper demonstrates that low–level array processing

can be fruitfully associated with high–level statistical mod-

elling techniques, which opens perspectives for operational

seismic monitoring.

To continuate this work, other machine learning tech-

niques can be considered to further improve the classification

performance, such as artificial neural networks or support

vector machines. Besides, more difficult classification prob-

lems can considered, such as the classification of events with

respect to their epicenter distance (e.g., regional and teleseis-

mic events).
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