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ABSTRACT

Multichannel noise reduction can be achieved without dis-

torting the desired signals, provided that the relative transfer

functions (RTFs) of the sources are known. Many RTF esti-

mators require periods where only one source is active, which

limits their applicability in practice. We propose an RTF esti-

mator that does not require such periods. A time-varying RTF

is computed per time-frequency (TF) bin that corresponds to

the dominant source at that bin. We demonstrate that a min-

imum variance distortionless response (MVDR) filter based

on the proposed RTF estimate can extract multiple sources

with low distortion. The MVDR filter has maximum degrees

of freedom and hence achieves significantly better noise re-

duction compared to a linearly constrained minimum variance

filter that uses a separate RTF for each source.

Index Terms— Relative transfer function, speech en-

hancement, noise reduction, MVDR filter

1. INTRODUCTION

Data-dependent multichannel filters provide optimal spatial

and spectral response based on the incoming signal statistics.

For instance, the multichannel Wiener filter (MWF) computes

a minimum-mean square error estimate of the desired sig-

nal [1], but it often leads to artefacts and high signal distor-

tion if the signal statistics are inaccurate. Decomposing the

MWF filter into a spatial filter and a single-channel filter al-

lows for more flexible control of the overall response, leading

to increased robustness against inaccurate signal statistics es-

timated in practice [2]. The spatial filter is often expressed

in terms of the source RTFs, where each RTF describes the

coupling between the microphones as a response to a given

source. If the RTFs of all sources are known, an MVDR filter

(for a single source) and linearly constrained minimum vari-

ance (LCMV) filter (for multiple sources) can achieve noise

reduction without distorting the desired signals [3].

Different semi-blind methods to estimate the RTFs exist

in the literature, which are based on a single-source model.

For instance, the RTF estimator in [4] exploits the non-

stationarity of speech signals to estimate the RTF of a speech
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source in noisy conditions. A different, subspace-based ap-

proach to RTF estimation was proposed in [5], where the

RTF estimate is obtained by solving a generalized eigen-

value (GEV) problem. To estimate the RTFs of multiple

sources, isolated periods can be used during which only

one source is active [5], so that the single-source model for

the mentioned estimators is not violated. Subsequently, the

estimated RTFs of the different sources can be employed

to compute an LCMV filter with multiple constraints, that

extracts the desired sources without distortion, using for

instance the framework in [5]. However, having multiple

constraints limits the degrees of freedom, and hence the noise

and interference reduction capability of the spatial filter.

To mitigate this problem, we propose an RTF estimator

suited for noise reduction using an MVDR filter, which can

be applied in scenarios with multiple sources, where no infor-

mation about the number, location, and activity of the sources

is available. At each TF bin, a single RTF is estimated which

corresponds to the RTF of the dominant source at that TF bin.

Such implicit usage of the speech sparsity in the TF domain

maximizes the degrees of freedom for noise reduction, while

maintaining low distortion of the desired signal, regardless of

the number of active sources.

2. PROBLEM FORMULATION

2.1. Signal model

An array consisting of M microphones captures a desired sig-

nal and additive noise. The m-th microphone signal is given

in the short-time Fourier transform (STFT) domain by

Ym(n, k) = Xm(n, k) + Vm(n, k), (1)

where m, n, and k denote the microphone, time, and fre-

quency indices respectively, and Xm and Vm denote the de-

sired signal and the noise. The desired signal contains speech

from J sources, i.e. Xm =
∑J

j=1 Xmj , where J is arbitrary

and unknown. The transfer function between the j-th source

and the 1-st microphone is denoted by H1j(k). The RTF vec-

tor relative to the first microphone is defined as

g1j(k) = [1, H2j(k)/H1j(k), · · · , HMj(k)/H1j(k)]
T. (2)

As the processing is done independently at each frequency,

we omit the index k wherever possible. Assuming the mul-

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 404



tiplicative transfer function (MTF) approximation holds [6],

the desired signal at any microphone can be related to the de-

sired signal at the first microphone as follows

x(n) = g11 X11(n) + g12 X12(n) + . . .+ g1J X1J(n), (3)

where x = [X1, . . . , XM ]T. The vectors y and v are de-

fined similarly. The power spectral density (PSD) matrices

of the different signals are given by Φy = E
[
yyH

]
, Φx =

E
[
xxH

]
, and Φv = E

[
vvH

]
. In the following, it is as-

sumed that Xm and Vm are statistically uncorrelated, such

that Φy = Φx +Φv.

2.2. Noise reduction

Multichannel noise reduction is achieved by estimating the

desired signal received at a given microphone by using all

available microphones. The signal estimate is given by

X̂1(n) = wH(n)y(n), where w(n) represents a spatial filter

at a given TF bin. An LCMV filter is obtained by solving

argmin
w

wH
Φv(n, k)w, (4a)

subject to wHg1j(k) = 1, for j = 1, . . . , J. (4b)

Clearly, the LCMV filter requires estimation of the possibly

time-varying number of sources J and their corresponding

RTF vectors g1j , which is an extremely challenging task in

practice. Moreover, multiple constraints reduce the noise re-

duction capability of the filter.

The goal in this paper is to estimate the desired signal us-

ing only one constraint, regardless of the number of sources.

Solving (4) for one constraint yields the MVDR filter [1]

wMVDR(n, k) =
Φ

−1
v

(n, k) g̃(n, k)

g̃H(n, k)Φ−1
v (n, k) g̃(n, k)

. (5)

The computation of the time-varying RTF vector g̃(n, k) rep-

resents the main contribution of the paper.

3. STATE-OF-THE-ART RTF ESTIMATION

RTF estimation in single-source scenarios is well studied in

the literature. Two established estimators are the subspace-

based [5] and the minimum distortion-based estimator [2, 7],

which assume the following rank-one model

x(n, k) = g11(k)X11(n, k) (6a)

Φx(n, k) = φx11
(n, k) g11(k)g

H
11(k), (6b)

where φx11
is the PSD of the source signal at the first micro-

phone. In the following, we briefly review these estimators.

3.1. Subspace-based RTF estimation

The subspace-based RTF estimator proposed in [5], is based

on the GEV problem for the matrix pencil (Φy,Φv)

(φx11
g11 g

H
11 +Φv)u = λΦv u, (7)

where λ and u denote an eigenvalue and eigenvector pair, and

the PSD matrix Φy of the microphone signals is given by

Φy(n, k) = φx11
(n, k) g11(k)g

H
11(k) +Φv(n, k). (8)

As the matrix Φx is of rank one, there is only one generalized

eigenvalue λ that is larger than one and g11 is a scaled and

rotated version of the corresponding eigenvector u. By def-

inition, the first entry of g11 is equal to one. Hence the RTF

can be obtained by the following normalization

g11 =
Φv u

e1 Φv u
, with e1 = [1, 0 . . . , 0]. (9)

In practice, the PSD matrices are estimated by temporal

averaging, hence even when a single source is present, the

rank one assumption is not valid. Nevertheless, selecting the

eigenvector that corresponds to the largest eigenvalue repre-

sents a good estimate of the source RTF vector, provided that

the speech component is significantly stronger than the noise.

3.2. Minimum distortion-based RTF estimation

Based on the rank one model, the RTF vector g11 is equal

to the first column of the PSD matrix Φx, normalized by the

signal power at the first microphone, i.e.

g11(n, k) =
Φx(n, k) e1

eH1 Φx(n, k) e1
. (10)

The same solution arises as the so called spatial prediction

vector which is found, in the minimum mean-squared error

sense, by solving the following optimization problem [2, 7]

argmin
g11

E
[
(x− g11X1)

H(x− g11X1)
]
. (11)

To compute (10), the PSD matrix Φx of the desired signal is

required, which can for instance be obtained as the difference

Φy −Φv, if an estimate of the noise PSD matrix is available.

4. PROPOSED RTF ESTIMATION

When multiple sources are present, the rank of the PSD ma-

trix Φx increases, and the signal has the general form given

by (3). To illustrate that the standard subspace-based method

described in Section 3.1 is inapplicable in this case, we look

at the GEV problem for a two-source scenario

(φx11
g11 g

H
11 + φx12

g12 g
H
12 +Φv)u = λΦv u. (12)

Equation (12) can be rearranged as follows

c1 g11 + c2 g12 = (λ− 1)Φv u, (13)

where c1 = (φx11
gH
11u)

−1, c2 = (φx12
gH
12u)

−1.

It is clear from (13) that the eigenvectors that correspond to

the eigenvalues larger than one, provide two distinct linear

combinations of the RTF vectors. Hence, they represent a

basis for the signal subspace, but do not provide estimates of

the separate RTFs required in the LCMV filter computation.
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To extract the desired signal in multi-source scenarios, we

propose an estimator that computes the RTF of the dominant

source at each TF bin, by projecting the instantaneous vector

y onto the multi-dimensional signal subspace. The projection

is performed at each TF bin where speech is present, requiring

a narrowband voice activity detector (VAD) mechanism. In

this manner, given a single RTF per bin, an MVDR filter can

be used to extract the desired sources with low distortion. In

Section 4.1 we briefly review the VAD method employed in

this work, and in Section 4.2 we describe the proposed RTF

estimator.

4.1. Narrowband voice activity detector

Assuming that the commonly used Gaussian signal model for

the STFT coefficients [8, 9] is valid, the PSD matrices Φv,

Φx, and the signal vector y suffice to compute a narrow-

band VAD. We define the hypotheses Hx and Hv to indi-

cate speech presence and speech absence, respectively. The

likelihoods under the different hypotheses are then given by

p(y | Hv) =
1

πMdet[Φv]
e−y

H
Φ

−1

v
y, (14)

p(y | Hx) =
1

πMdet[Φv +Φx]
e−y

H[Φv+Φx]
−1

y.

The speech presence probability (SPP) p(Hx |y), can be ob-

tained by applying the Bayes theorem as follows

p(Hx |y) =
p(y | Hx) · p(Hx)

p(y | Hx) · p(Hx) + p(y | Hv) · p(Hv)
, (15)

where p(Hx) = 1 − p(Hv) denotes the a-priori SPP. In this

work we use a direct-to-diffuse ratio (DDR)-based a-priori

SPP [10], but other fixed or signal-dependent a-priori SPP

can be employed as well. Subsequently, a VAD Ix can be

computed for each TF bin by setting a threshold pthr

Ix =

{
1 if p(Hx |y) > pthr

0 otherwise .
(16)

4.2. Proposed RTF estimator

Although the signal subspace obtained using the GEV decom-

position of (Φy,Φv) does not directly provide the RTF esti-

mates in multi-source scenarios, it is crucial for the proposed

RTF estimator. Note that as the PSD matrices are estimated

by recursive temporal averaging and the activity of the present

sources changes over time, a time-varying signal subspace is

obtained, with possibly time-varying dimension, depending

on the activity of the sources across time. Experiments indi-

cated that for moderate reverberation levels, and up to four si-

multaneously active sources, two eigenvectors per frequency

bin suffice to represent the signal subspace, regardless of the

number of sources. Hence, in this work the subspace dimen-

sion is fixed to two. In future work, online dimension se-

lection is to be investigated, for instance by considering all

eigenvectors whose corresponding eigenvalues are larger than

a pre-defined threshold.

Given the subspace estimate at each TF bin, we compute

an orthonormal basis Ux by orthonormalizing the two largest

generalized eigenvectors of the matrix pencil (Φ̂y, Φ̂v),
where the hat indicates an estimate of the true PSD matrix.

Let us denote a projection matrix onto the signal subspace by

Px = Ux U
H
x . The key idea of the proposed method is to

enforce the instantaneous RTF estimate ginst(n, k) given by

ginst(n, k) =
y(n, k)yH(n, k)e1

eH1 y(n, k)y
H(n, k)e1

, (17)

to lie in the estimated signal subspace, by performing the fol-

lowing subspace projection at each TF bin

gproj(n, k) =
Px(n, k) ginst(n, k)

eH1 Px(n, k) ginst(n, k)
, (18)

where the denominator normalizes the first element to one.

The vector ginst captures the spatial information of the dom-

inant source, whereas the subspace projection denoises ginst
and confines it onto the current subspace estimate. As a re-

sult, when speech is present, the expression (18) provides an

estimate of the RTFs vector for the dominant source at TF bin

(n, k). The final RTF estimate is obtained as follows

g̃(n, k) = Ix(n, k) gproj(n, k) + [1− Ix(n, k)] g̃(n− 1, k),
(19)

hence, when speech is present (i.e., Ix(n, k) = 1) the RTF

estimate is obtained by (18), whereas when speech is absent

the RTF estimate from the previous frame is used.

Finally, it should be noted that the proposed RTF estimate

can be used in an MVDR filter to extract a sum of multi-

ple speech sources, but cannot be used for source separation

where the RTFs of the individual sources are required.

5. PERFORMANCE EVALUATION

The proposed RTF estimator was evaluated in a simulated

room with dimensions 4.5 × 4 × 3 m3. The microphone

signals were obtained by convolving clean speech with sim-

ulated room impulse responses [11]. White sensor noise and

diffuse babble noise were added [12]. The experiments were

performed using a uniform linear array of 5 omnidirectional

microphones, with microphone distance of 3 cm. The method

is however applicable to any constellation of co-located or

distributed microphones. The sampling rate was 16 kHz and

the STFT frame length was 128 ms with 50% overlap.

The evaluation consists of two parts: (i) in Section 5.1, the

signals from multiple sources are extracted by an MVDR fil-

ter with the proposed RTF estimate and evaluated in terms of

noise reduction and speech distortion; (ii) in Section 5.2, the

estimated RTF is compared to the ideal RTF using the Hermi-

tian angle between the RTF vectors. The matrices Φy and Φv

were obtained by a first-order recursive averaging with a time

constant of 30 ms. The SPP threshold pthr was set to 0.7.
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First, to compare existing and proposed RTF estimators

without the effect of erroneous noise PSD estimates, the sys-

tem was evaluated using an oracle recursive estimate obtained

from the noise signal separately. Clearly, in practice, the noise

signal is not available. In addition, the system was evaluated

in a fully blind scenario where Φv is estimated from the data

using the DDR-based framework proposed in [10].

5.1. Objective extracted signal quality

Scenarios with one to four sources were tested, each located at

1-2 meters from the array. For each number of sources, the re-

sults was averaged over 5 source constellations. Signals with

30 seconds of speech were used, with all sources simultane-

ously active. The signal extraction was evaluated in terms of

segmental speech distortion (SD) index νsd, as defined in [13,

Eq. 4.44] and segmental noise reduction (segNR). The sum of

all speech signals received at the first microphone served as a

desired signal reference. The segNR for frame i of length T
samples (corresponding to 30 ms) was computed as follows

segNR(i) = 10 log10

〈
|vm(t)|2

〉
〈
|v̂m(t)|2

〉 , (i− 1)T ≤ t < iT, (20)

where 〈·〉 denotes temporal average, and v̂m is the filtered

noise. The overall segNR is obtained by averaging segNR(i)
over i. Reverberation times of 350 ms and 500 ms were tested.

The signal to sensor noise ratio was 30 dB. The power of the

babble noise was varied to obtain SNRs of 18 dB and 8 dB.

The results are given in Fig. 1. An LCMV filter with an

ideal RTF vector for each source was tested, to demonstrate

that multiple constraints significantly limit the segNR. The

spatial prediction-based, the standard subspace-based, and the

proposed RTF estimators, denoted by ”SP”, ”GEVD”, and

”Proposed”, were used in an MVDR filter. Derived from a

minimum-distortion principle, the SP-based estimator main-

tains SD index νsd < 0.1 in all scenarios, however, the segNR

is often insufficient, and decreases with increasing number

of sources. The GEVD-based estimator offers a segNR up to

6 dB larger than the SP-based, at the cost of rapidly increasing

SD index as the single source model is violated. The advan-

tage of using multidimensional subspace in the proposed RTF

estimator is manifested in the low SD index for any number

of sources, while the segNR is only by less than 1 dB worse

than the GEVD method. Even in the single source case, the

SD index when using the proposed estimator is lower than

the GEVD-based, due to the fact that for reverberant environ-

ments and short STFT frames, the MTF approximation might

not hold [6], hence violating the rank-one model. Although

not presented in the figures, we additionally evaluated scenar-

ios with very low SNR (around 0 dB). In severe noise condi-

tions, the advantage of the proposed RTF estimator is lost due

to increasing number of misdetections in the VAD, leading to

high SD index similar to the GEVD method.

5.2. Distance between estimated and ideal RTFs vectors

To measure the deviation of the RTF estimate at each TF bin

from the ideal RTF of the dominant source at that bin, we

consider for each source j the Hermitian angle between the

ideal RTF gj,ideal and the estimated RTF g̃, computed as

θjH =

{
arccos

|gH

j,ideal(k) g̃(n,k)|

‖gj,ideal(k)‖ ‖g̃(n,k)‖ if source j is dominant

0 otherwise.

(21)

The angle θjH is relevant only if the source j is dominant,

hence it is set to zero otherwise. We illustrate an example with

two sources, reverberation time 350 ms and SNR of 18 dB.

The fact that the GEVD estimator does not consider instan-

taneous data is reflected in the distance measure in Fig. 2(a)

where the estimated RTF vector is aligned with the source that

is on average stronger at a particular frequency. The proposed

estimator on the other hand, exploits sparsity and aligns the

RTF vector with the dominant source at each bin. The im-

provement in RTF vector alignment is also visible from the

time-averaged results over a 30 seconds signal in Fig. 2(b).

6. CONCLUSIONS

An RTF estimator was proposed that can be used in an MVDR

filter to extract multiple desired sources. By using an estimate

of the multidimensional signal subspace, multiple sources are

considered in the model, whereas by using instantaneous

signals, speech sparsity is exploited. The implicit usage of

speech sparsity results in only one filter constraint per TF

bin, which in turn leads to maximum degrees of freedom

for noise reduction. The estimator is suitable for blind sce-

narios with unknown number of sources where no oracle

information about the source activity over time is avail-

able. Audio samples are available at http://www.audiolabs-

erlangen.de/resources/2015-EUSIPCO-RTF.
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Fig. 2: Hermitian angle between estimated and ideal RTF vec-

tors. SNR 18 dB, reverberation time 350 ms.
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