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ABSTRACT

This paper considers the problem of detecting and estimating
AM/FM components in the time-frequency plane. It intro-
duces a new algorithm to estimate the ridges corresponding to
the instantaneous frequencies of the components, and to seg-
ment the time-frequency plane into different “basins of attrac-
tion”, each basin corresponding to one mode. The technique
is based on the structure of the reassignment vector, which
is commonly used for sharpening time-frequency representa-
tions. Compared with previous approaches, this new method
does not need extra parameters, exhibits less sensitivity to the
choice of the window and shows better reconstruction per-
formance. Its effectiveness is demonstrated on simulated and
real datasets.

Index Terms— multicomponent signals; short-time
Fourier transform; reassignment; time-frequency; AM/FM;
ridges

1. INTRODUCTION

Many signals from the physical world can be modelled as
a sum of amplitude- and frequency-modulated (AM/FM)
components, and are therefore designated as multicomponent
signals (MCS). The short-time Fourier transforms (STFT)
of MCS exhibits particular time-frequency (TF) structures
which are of great importance for analysing the constituent
modes of the signal. Indeed, the components are associated
with local maxima of the TF representation that are known
to make up curves, called ridges in the TF plane. Many
techniques for modes analysis from their TF representation
are based on ridge analysis. Among these techniques, those
based on reassignment have been extensively used [1, 2, 3] to
enhance the TF representation. The basis of the reassignment
technique is to move the points of a given TF representation
onto a ridge following the direction given by the so-called
reassignment vector (RV). One limitation of reassignment
technique is that it does not allow for mode reconstruction.
Recently, a technique, called Synchrosqueezing transform,
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has been introduced based on reassignment along the fre-
quency axis that enhances TF representation while enables
mode reconstruction [4].

Every previously described technique is nevertheless tied
to a robust ridge estimator. In this paper, we first show the
central role played by RV to determine the ridges which will
appear as a subclass of objects called contours and then to
subsequently compute the so-called basins of attraction asso-
ciated with these ridges. The novelty of our approach is that
both ridges detection and basins of attraction determination
are fully adaptive. Indeed, to compute such entities some re-
sults were already obtained in [5] considering the inner prod-
uct of RV with vectors having a predefinite orientation. Af-
ter having explained the specificity of ridges in the contours’
class, we focus on how to compute the basin of attraction as-
sociated with a given ridge using RV and the knowledge on
the contour location computed just before. Finally, we intro-
duce a new mode reconstruction technique based on the basin
of attraction which we numerically test on noisy simulated
signals and real ones.

2. DEFINITIONS

Given a signal f € L'(R), the space of real integrable func-
tions, we define its Fourier transform by:

) = /]R F(tye™™ dt. (1

The STFT of a signal is then defined by
Vim,t) = /Rf(u)g(u —t)e M du, (2)
where ¢ is assumed to be a real-valued window with L' norm
equal to 1. The spectrogram is then defined as |V} (n,t)|?.

Finally, multicomponent signals f to be considered in the se-
quel are defined by:

K
F&) =" fult), with fi(t) = ax(t)e'** "), 3)
k=1

for some finite K, where ay(¢) > 0 is a continuously differen-
tiable function, ¢y, is a two times continuously differentiable

1501



23rd European Signal Processing Conference (EUSIPCO)

function satisfying ¢;.(t) > 0 and ¢}, ,(t) > ¢;(t) for all
t. Note that this last condition enforces the frequency separa-
tion of the modes, which is needed to ensure the uniqueness
of the decomposition. In the following, fi will be referred to
as an AM-FM component.

3. DEFINING RIDGES AND CONTOURS

3.1. Reassignment of the spectrogram

The principle of the reassignment method (RM) is to compen-
sate for the TF shifts induced by the 2D smoothing defining
the spectrogram. To do so, a meaningful TF location to which
to assign the local energy given by the spectrogram is first de-
termined. It corresponds to the centroid of the distribution,
whose coordinates are defined by

%f(na t) == _877 arg Vfg(na t)
wy(n,t) =0+ 0 arg Vi (n, t).

Both quantities, which locally define an instantaneous fre-
quency and a group delay, enable perfect localization of linear
chirps [3]. An efficient procedure computes them according

to:
Vi (n,1)
t+ RS L b o)
{ Vin,t)
V9 (n,t
Vf (7’3 t)
where tg stands for the function tg(¢t) and R{Z} (resp.

&{Z}) is the real (resp. imaginary) part of the complex
number Z.

Tl t) =

wr(n,t)

3.2. Definition of Contour Points

Detecting ridge points and linking them to build smooth con-
tours is a challenging problem that has already been consid-
ered in the STFT and wavelet settings [6]. Let us here present
the technique introduced in [5] to define ridges in the TF
plane. It first considers the reassignment vector (RV) defined
by:

_ 7A.f (777 t) -1

RV (n.1) ( wy(n,t) —n ) ' ©
Using that formalism, ridge points correspond to locations
where RV changes sign rapidly, which happens when one
crosses a ridge, corresponding to the instantaneous frequency
of a mode. However, to find out those crossings in a discrete
setting is rather unstable, therefore one prefers to project RV
onto a specific direction and then determines the location of
the change of sign of the projection. These points are called
contour points (CPs), and were first introduced in [5]. In prac-
tice, they are defined as the zeros of the inner product of RV

with a unitary vector of orientation 6 as explained hereafter.
Indeed, assuming that the window ¢ is Gaussian with unit

variance, then one has V}fg (n,t) = —VJ;‘.’/ (n,t), and RV reads

Vi (n,t Vi (n,t
” fg (n,1) 3 fg (n,1) . e
CPs associated with angle 0 are then said to satisfy:

Vi(n,t)
«d S ANPT —io
& { Vf(% ) e =0. ()

One can then remark that expression (8) corresponds to the
zero of an inner product since:

Vi, t)
R {V{;q((’l;’t))e_w} = <RV(7lat):Ug+9>7 (9)

where v, is the unit vector in the direction A. CPs thus cor-
respond to the points where the inner product of RV with the
unit vector in the direction 7 + 6 changes signs.

They can also be related to the differential of log [V (1, t)|
in the direction vz 4¢. Indeed, when STFT using a Gaussian
window with unit variance is computed on a linear chirp, we
get [3]:

RV (n,t) = Viog|V{(n,1)| (10)
where V is the operator (0;, d,), so that (9) rewrites:
(RV(n,t),vz49) = Vlog |Vf9(77,t)|Tv%+9.

CPs are thus associated with some predefinite angle 6. It has
been noted [5] that the best results are obtained when 6 corre-
sponds to the direction of the ridge, meaning 6 + 5 roughly
corresponds to the orientation of RV.

Once CPs are determined, authors in [5] chain them by
considering the contours of level zero of the function defined
in (9) (contourc MATLAB function). Then, the contours are
segmented depending on the zeros of the spectrogram, and fi-
nally ordered by decreasing energy (corresponding to the sum
of the squared spectrogram coefficients along the chain). One
ends up with a series of ridges corresponding to modes with
deacreasing energy, that can finally be reconstructed in the
temporal domain.

3.3. Case of a non-unitary window

Since RV points towards a ridge (see (10)), (9) keeps a fixed
but different sign on each side of a ridge provided vz ¢ is
not in the direction of the ridge. Then, if one uses a Gaus-
sian window with standard deviation o, one shall consider the
following renormalisation of STFT:

Vit =Vi(Zo0), an
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and then the following generalisation of vector (7)

(3% {‘ffg(n’t) } S {‘{fg(n’t) }) (12)
Vin,t) Vin,t)

which is no longer equal to RV. However, it shares the nice
property with RV computed using a Gaussian window of unit
variance to correspond to the gradient of the logarithm of the
modulus of the renormalised STFT. Indeed, remarking that

Vftg(ﬁ7 t) = 702‘/]?,(77, t), one has:

R,(n,t) =

~ ~ T ~
RVI D] Vi 1V (1)
Vi, t) " [VE(n, )] o Vin,t)
From this, we deduce that:
R,(n,t) = oVlog|Vi(n,1)]. (13)

To interpret this result, one can finally note that denoting g,
the Gaussian window with unit variance:

/ f(t)g(t —or)e " tdt
R

Vi, 7) =
_ / Flot)gr (t — r)e—md.
R

So, when f is a linear chirp, R,(n,t) is orthogonal to the
ridge associated with the chirp f(ot), then one needs to renor-
malise R, (7,t) as follows to get a vector orthogonal to f(¢):

R, (n,t) = Ly Lg(n’t) o Lg(n’t) (14)
RO RTOIN Rl R TON)

so that the contours associated with angle 6 can be defined by:

<R0'(777t)a1]%+9> =0. (15)

Note that due to the renormalisation factor, the formula giving
the contours can no longer be defined using the imaginary part
of some complex number.

4. ADAPTIVE COMPUTATION OF CONTOURS AND
BASINS OF ATTRACTION

4.1. Adaptive contour estimation

The previous approach requires the direction € to be given
a priori and is therefore not well suited to determine con-
tours with varying orientations. As already noticed, vector
Ry (n,t) = 14 (n, )€ (1) is oriented perpendicularly to the
ridge of f (if f is a linear chirp) in its vicinity and changes
orientation when one moves away from it due to the presence
of noise. Instead of imposing an orientation 6 to compute the
contours as in (15), we define these as the points where:

Oé(ﬂat) = <RU(777t)a Vo, (n,t) mod 7r> =0 (16)

with (6,(n,¢) mod 7) € [0, [

The rationale behind this formula is that «(,t) corre-
sponds to the signed magnitude of the (renormalised) RV: its
magnitude equals 7, (7, t) and it has a different sign on each
side of the ridge. More precisely, one can check that if the
slope of the ridge is positive (resp. negative) «(n,t) is nega-
tive (resp. positive) above the ridge and positive (resp. nega-
tive) under. This way, one defines a new type of CPs that no
longer depend on a fixed angle 6 and that are chained together
to make up ridges the same way as with a fixed 6.

4.2. Determination of basins of attraction using RV

We consider here an alternative way of defining the basin of
attraction of a ridge, i.e. the set of coefficients associated to a
given contour. This is a necessary step for a full segmentation
of the time-frequency plane, and the reconstruction of all the
modes making up the signal.

Since RV points towards a ridge in its vicinity, it is nat-
ural to determine the basin of attraction of a given ridge as
the set of points such that RV points towards that ridge. Note
that here we no longer need to consider the renormalised ver-
sion of RV (7, t). Because the localization property of RV is
only valid for linear chirps, and also because of the presence
of noise, the RV does not point exactly to a ridge. We thus
propose to associate to a given coefficient (7,t) the closest
ridge to where its RV points, i.e. the closest ridge of point
(77(n,t),wr(n,t)). An illustration of this procedure is given
on Figure 1 (bottom), on a sinusoidal phase signal.

4.3. New mode reconstruction procedure based on basins
of attraction

We here investigate two different reconstruction techniques,
based on two synthesis formula for STFT and on the knowl-
edge on the basins of attraction. Let B; C R? be the basin of
attraction associated with ridge 7, then a local reconstruction
technique of mode f; corresponding to ridge ¢ can be achieved
by:

1
i(t) = —= VZ(n,t)dn. 17
1) 9(0) /(t,n)EBi ! (m, t)dn an

This reconstruction technique will be denoted by R; in the
following. A second integration technique consists in inte-
grating the information on the whole basin of attraction by
considering the more standard formula:

fl(T):// Vfg(n,t)g(T—t)e%””“_t)dtdn. (18)
B;

This reconstruction technique will be denoted by R, in the
following. The main difference between the two synthesis
formulae is that equation (17) is pointwise and does not guar-
antee a smooth reconstruction (see [7] for a more detailed ex-
planation).
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5. NUMERICAL RESULTS

5.1. Basin of attraction determination and mode recon-
struction for synthetic data

We first consider a toy example consisting of the AM/FM sig-
nal represented in Figure 1 (top), with an additive white Gaus-
sian noise (input SNR = 17 dB). Figure 1 (bottom) shows
the contours and basins associated with this example, with
o = 0.04. We then perform the reconstruction by selecting
the coefficients associated with the first basin (with maximal
energy), and applying synthesis formula (17) or (18). The
SNR after reconstruction (output SNR) is 28 and 29 dB re-
spectively.

Fig. 1. top: the noise-free toy signal. bottom: the contours
(black lines), basins of attraction (colored areas) and the zeros
of the spectrogram (red dots).

Since the choice of the window’s size is a common prob-
lem in TF analysis, we now investigate the sensitivity of the
reconstruction procedure to that parameter. To this end, we
carry out the same test with different values for o : 0.02 and
0.06. The basins of attraction and ridges are depicted on Fig-
ure 2, showing that the size of the window alters the structure
of the basins. However, we observe that the value of o has
almost no influence on the reconstruction results. On the one
hand, it is expected that the fact the ridge is not detected close
to time ¢ = Os and ¢ = 1s when ¢ = 0.06 does not affect
the mode reconstruction since the signal has very low ampli-
tude at these times. On the other hand, we note that the width
of the basin of attraction is considerably reduced when o is
large and when the modulation is low but this has very little
incidence on the quality of the mode reconstruction.

Now, we aim to quantitatively evaluate the performance
of methods Ry and R- in a noisy context. In this regard,
Figure 3 shows the output SNR as a function of input SNR,
for the same synthetic signal and for o = 0.04. On that figure,
we also compare the two reconstruction methods with a TF-

Fig. 2. top: basin of attraction computed with ¢ = 0.02, the
ouput SNR R; and R» methods equals 26 and 28 dB, respec-
tively. bottom: idem but with o = 0.06, the output SNR is 27
and 29 dB respectively.

based denoising method named block-thresholding [8]. These
results show good denoising performance of both proposed
reconstruction techniques, o behaving slightly better. The
contour-based approach outperforms the block-thresholding
of a few decibels, on a wide range of input SNR. Note that
for denoising purpose the reconstruction from the basins of
attractions may not be optimal, and can be improved if we
select a strip of coefficients around the ridge with a width
adapted to the noise level, such as in [9].

c30F M 5
zZ s
2 20 —e—Blochk ‘(Ij'hFr‘esholding
20l y s - @ - metho B
g ‘F"‘.‘.'v —-3--method R ;

of ‘ ‘ ‘ ‘ ‘ ]

5 0 5 10 15 20 25
input SNR

Fig. 3. Analysis of denoising performance of the proposed
approach, and comparison with the block-thresholding.

5.2. Application to real data

Finally, we test our method on a real bat echolocation signal,
made of 400 samples recorded at 143 Hz, to which we add
a white Gaussian noise with input SNR of 8.0 dB. Figure 4
(top) shows the spectrogram of the signal, then the contours
and basins of attraction are depicted underneath. The three
contour chains corresponding to the largest energies are then
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used to reconstruct the modes. The three main components
of the echolocation signal seem to be well estimated. Fig-
ure 4 also shows the reconstruction of the three modes using
method Rs, and compares the final reconstruction obtained
by summing those three modes, with the original noise-free
signal. The output SNR of the final reconstruction being 11.5
dB, it means that while estimating the modes the algorithm
performs some kind of denoising.

"0 0.5 1 1.5 2 25 3

Fig. 4. From top to bottom: the spectrogram of the noisy
bat signal, ridges and basins of attraction, three reconstructed
modes, original noise-free signal (red) and the reconstruction
(blue).

6. CONCLUSION

In this paper, we have presented a new adaptive algorithm to
estimate some structure called contours associated with TF
representation of multicomponent signals. This algorithm is
based on an extensive use of the reassignment vector and is

fully adaptive compared with previously proposed approach
proposed in [5]. Having determined the basins of attraction
associated with some kind of contours called ridges, we have
proposed a new technique for mode reconstruction. An inter-
esting aspect of the proposed ridge detector is that it does not
require any assumption on the co-existence of a certain num-
ber of modes at a given time ¢. This will be further exploited
in a future work.
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