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ABSTRACT

In acoustic echo cancellation (AEC) a doubletalk detector (DTD)
is typically used to avoid misconvergence of the adaptive filter dur-
ing simultaneous activity of near-end acoustic scene and loudspeaker
playback. While several single-channel DTDs can be generalized to
multiple channels, only little attention was so far paid to the eval-
uation of the resulting multichannel DTDs. In this paper, different
DTDs are reviewed and evaluated. In particular, the influence of
the number of loudspeakers is investigated as new dimension in the
experimental evaluation, where up to sixteen loudspeaker channels
are considered. The results show that the performance of a DTD
is affected by the number of loudspeaker channels whenever the
cross-correlation between the loudspeaker signals is considered by
the DTD. Moreover, considering this cross-correlation turned out to
be necessary for a high detection performance.

Index Terms— Doubletalk detection, multi-channel, acoustic
echo cancellation, comparison, evaluation

1. INTRODUCTION

Acoustic echo cancellation (AEC) is a commonly applied technique
to remove a loudspeaker echo in a recorded microphone signal,
which would hinder the far-end party in a teleconference or degrade
the performance of an automatic speech recognizer. This is accom-
plished by first identifying the acoustic path between loudspeaker(s)
and microphone by means of a multi-channel adaptive filter that
provides an estimate of the loudspeaker echo signal, which is then
subtracted from the microphone signal. Since the filter adaptation
is based on the estimated joint statistics of the loudspeaker signals
and the microphone signal, any contribution of the near-end acoustic
scene to the microphone signal will impair the acoustic path identifi-
cation. Hence, a doubletalk detector (DTD) is used to detect activity
of a near-end speaker such that the adaptation can be held in that
case [1]. Actually, the DTD (which provides a hard decision) can
also be used to control the step-size (cf. [2]): If doubletalk is de-
tected the step-size is set to zero. Robust adaptation algorithms [3,4]
and two-path models [5] are an alternative to using DTDs, while
they can also be combined with a DTD [6].

Using more than one loudspeaker for spatial audio reproduc-
tion implies using a DTD considering all loudspeaker signals. Many
single-channel detectors have been proposed [7-11] that can be gen-
eralized to the multi-channel case, as described in [12, 13]. Even in
the single-channel case, a comprehensive evaluation and compari-
son of those detectors has drawn less attention in the literature [14],
where a comparison of the detector performance in multi-channel
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Fig. 1. General signal model of the combination of AEC with a DTD

scenarios appears to be entirely missing [15]. This might be due
to the fact that an analytical comparison appears to be infeasible
without making assumptions that are typically violated in practice.
For example, signals would have to be assumed as being station-
ary, which does not hold for speech as a commonly used record-
ing/reproduction signal. Moreover, experimental studies might never
exhaust the full range of aspects that could be relevant in an individ-
ual scenario. The latter approach can, nevertheless, provide helpful
information for the application of the considered techniques. While
there are many factors that influence the performance of the DTD,
we investigate in this work the influence of the number of loud-
speaker signals that are considered by the detector, and used the ex-
perimental evaluation in [14] as a guideline.

Unfortunately, not all DTDs mentioned above can be dis-
cussed due to space restrictions, such that the focus is on following
DTDs: The Geigel algorithm [7], the consideration of the cross-
correlation between loudspeaker and microphone signals [8], and a
generalization of the latter approach that also considers the cross-
correlation between the loudspeaker signals [10]. The latter two are
referred to as the cross-correlation method and the normalized cross-
correlation method in this paper. The normalized cross-correlation
method is closely related to a coherence-based DTD proposed in [16]
that is not evaluated here.

This paper is structured as follows: In Sec. 2 the considered
signal model is explained, before the actual DTDs are described in
Sec. 3. The evaluation scenario and the considered measures are
explained in Sec. 4, preceding the presentation of results in Sec. 5.
Conclusions follow in Sec. 6.

2. SIGNAL MODEL AND PROBLEM STATEMENT

In this section, the considered signal model is described. This is fol-
lowed by a brief consideration of the second-order statistics (SOS) of
microphone and loudspeaker signals that is a prerequisite for Sec. 3.
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In the following, L loudspeakers and a single microphone, as
shown in Fig. 1, are considered. The L discrete loudspeaker signals
are represented by x;(k), where [ indexes the loudspeaker and k the
time instant. For block processing, it is convenient to stack the L
loudspeaker signals in a single vector that is given by

x(k) = (xT (), xE (), xE(R)) n
xi(k) = (xi(k— K +1),z(k— K+2),...,z(k)", (2

where K is the number of time samples considered in each x;(k)
and -T denotes the transpose operation.

The room impulse response (RIR) of length K from loud-
speaker [ to the microphone is denoted by h; (k) and captured by the
vector

h= (hf,hg,...,hf)T, 3)
hy = (h(K = 1), (K —2),...,la(0))" . )

The microphone signal is described by
d(k) = x" (k)h + v(k) + n(k), 5)

where n(k) describes the microphone noise and v (k) is the contri-
bution of the near-end speaker. The task of a DTD is to detect a
contribution of v(k) to d(k), where statistics of different order can
be considered.

For the SOS of the transducer signals, v(k) and n(k) can be
assumed to be zero mean and uncorrelated (i.e. orthogonal) to
x1(k) V1, k. Hence, the following relations hold:

roa = € {d*(k)} :S{d(k)xT(k)}h+av2 to2, (6
ra = & {x(k)d(k)} = & {x(k)xT(k)} h=Ruh, (7
Taa = TRy txa + 04 + 07 = righ + 00 + op, 3)

where £ {-} denotes the expectation operator, rqq is the second-order
moment of d(k), rxq is the cross-correlation vector between x(k)
and d(k), o2 is the variance of v(k), o2 the variance of n(k), and
R is the autocorrelation matrix of x(k) that also describes the
cross-correlation between the loudspeaker signals. Note that (7)
is the matrix form of the so-called normal equations that underlie
system identification exploiting SOS. Accordingly, filter adaptation
algorithms aim at approximating a solution given by [17]

h =R, 'ra. 9)

For implementations, exponential averaging can be used to obtain
estimates of rqd, rxa and Ryx, given by 7aq(k), Txa(k), and Ry (k),
respectively. An example of such a computation is given by

k
fa(k) = (1 =X ANx(k - r)d(k - k), (10)

xk=0

where ) is the exponential forgetting factor.

3. DOUBLETALK DETECTION

During operation, the DTD compares an algorithm-specific test
statistic £pa (k) with a given threshold Tpa, where subscript DA is a
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placeholder for the actually considered detection algorithm. When-
ever a test statistic is below the threshold, doubletalk is assumed:

&pa(k) < Tpa : doubletalk,
&pa(k) > Toa : no doubletalk,

where the actually used test statistics are described in the following.
The Geigel algorithm [7] is the simplest under consideration
with the test statistics

_ =B llo

= Tagry

1)

where ||-|| oo describes the infinity norm, i. e., the maximum absolute
value of the components in a vector.

A different DTD is the cross-correlation method, which was
originally proposed to be applied to the error signal of an adaptive
filter (like e(k) in Fig. 1) [8], but can be applied also to the micro-
phone signals instead, as shown in [14]. The latter approach is con-
sidered in the following, which relies on the fact that the loudspeaker
echo in d(k) is strongly correlated to the loudspeaker signals x;(k),
while the near-end signal v(k) is not. The test statistic is then given
by

#xa(R)1l;
Faa (k) ()

where p defines a chosen norm and 7y (k) is an estimate for the
loudspeaker signal power.

Finally, the normalized cross-correlation method proposed in
[10] is explained. This approach exploits the fact that 74q(k) is
strongly affected by v(k), while the influence of v(k) on fxa(k)
and Rxx(k) vanishes on average due to statistical orthogonality [10].
This motivates using the test statistic

€c(k) = 12)

ra(F) Ry (k) Ea ()
k) = xd Axx X , 13
€N( ) Tdd(k) ( )
which is equal to one if 62 = ¢ = 0 and below one whenever

there is any power in the near-end speaker signal or the noise signal.
The influence of noise is typically much weaker than the influence
of the near-end signal. The computation of (13) is very expensive,
especially in multi-channel scenarios. Hence, approximations are
used in typical implementations, where an adaptive filter provides
an estimate fl( k) of h, such that (13) can be approximated by (cf.(8)
and (9))

(k) ———~+—. (14)

It should be noted that while the numerator of (14) is non-negative,
this is not guaranteed for r’ (k)h(k) whenever an adaptive filter suf-
fers misconvergence. Although this is difficult to interpret from a
theoretical perspective, doubletalk will likely result in misconver-
gence. Hence, using the absolute value of r’(k)h(k) in (14) im-
proves the performance of the DTD significantly.

Three different ways to compute &x (k) using (14) to obtain h(k)
are considered:

1. Using a perturbed RIR according to h(k) = h + n(k) where
n(k) is a Gaussian noise vector with an energy of —30dB rel-
ative to the energy captured in h, i.e. h”h. The resulting test
statistic is denoted by &£X (k).
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Fig. 2. Power envelope of microphone signal contributions (top) and
resulting near-end-to-far-end power ratio (NFPR) (bottom)

2. Using the normalized least-mean squares (NLMS) algorithm
[17] to obtain fl(k), in which case the test statistic is denoted by
&n(k).

3. Using the generalized frequency-domain adaptive filtering

(GFDAF) algorithm [18, 19] to obtain h(k), in which case
the test statistic is denoted by &g (k).

Note that the latter two ways consider Ry implicitly through (9),
while the first way ignores R« entirely.

4. EVALUATION SCENARIO

The evaluation scenario considered in this paper is a simulated tele-
conference using multi-channel audio reproduction. The recording
of human speakers has been simulated by the convolution of ane-
choic speech signals with measured RIRs, followed by the addition
of noise at a level of —50dB relative to the average level of the
respective reverberated signals during activity. The loudspeaker sig-
nals are generated considering the far-end speaker signal 0 (k) that is
convolved with the RIRs g;(k), measured from a single loudspeaker
to L different microphone positions. After that, independent white
Gaussian noise (WGN) signals n; (k) are added to the loudspeaker
signals. The resulting signal is then described by

K

wi(k) = (k) + > bk — £)gi(x). (15)

k=0

Note that far-end quantities are denoted with superscript ring (*).
For the near-end signal v(k), another RIR was used and the loud-
speaker echo was simulated using a further set of RIRs for h;(k),
measured from L loudspeaker positions to a single microphone po-
sition. The signals n(k) and 7;(k) consist of mutually uncorrelated
white Gaussian noise. Using the definition(15) with a signal-to-noise
ratio (SNR) of 50 dB, the autocorrelation matrix Ry will always be
non-singular but exhibit a higher condition number for larger val-
ues of L. As there is only a single human speaker simulated, this
condition number will exhibit as steep increase when using two or
three loudspeaker channels instead of one. Any further increase of
the loudspeaker channel number will have a more moderate effect
on the condition number.

To simulate the course of a teleconference, the far-end speaker is
first active for a time span of 10 s, while the near-end speaker is not.
This allows for sufficient correlation estimates, as required for the
DTD, and an initial convergence of the adaptive filters, if applicable.
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After 10s, v(k) and v(k) are randomly active. The level of the re-
sulting contributions in the microphone signal is shown in Fig. 2
along with the resulting near-end-to-far-end power ratio (NFPR).
This measure quantifies the power ratio of the near-end v(k) + n(k)
and the far-end x” (k)h signal contributions in d(k). In 50% of the
time instants, only 0(k) is active, while the sole activity of v(k) oc-
curs in 20% of the time instants. In 10% percent of the time instants,
neither ©(k) nor v(k) are active. In the remaining 20% of the time in-
stants, both signal sources are active (i. e. doubletalk occurs), while
the noise signals are always active. The minimum time span a source
is active is one second, where the human speakers in both signals are
alternatingly exchanged every 2.5, choosing from 8 recordings of
English, German, and French speakers of both genders. The sig-
nals v(k) and v(k) were scaled such that their microphone signal
contributions have an average level of zero dB during activity. This
experiment was repeated multiple times to ensure statistical signifi-
cance.

Note that this study considers only the properties of the individ-
ual test statistics themselves and not the integration of a DTD in an
AEC system as depicted in Fig. 1. Thus, the resulting improvement
of system identification and echo cancellation as well as the response
time of the DTDs were not measured. Instead, the main focus in this
work is on the following two quantities:

1. The false alarm probability, where a false alarm is a decision for
doubletalk in the absence of near-end activity,

2. The missed detection probability, where a missed detection is a
decision against doubletalk during near-end activity.

Both measures are only computed during far-end activity as there is
no filter adaptation otherwise. Due to space restrictions, the DTDs’
ability to differentiate between an echo path change and actual dou-
bletalk (as, e. g., considered in [6]) could not be evaluated.

While the false alarm probability and the missed detection prob-
ability are strongly dependent on the chosen threshold Tpa, an op-
timal choice of Tpa depends, in turn, on the considered DTD and
also on the evaluation scenario. To allow a meaningful comparison
of the considered algorithms, the receiver operation curve (ROC)
can be considered, which shows the probabilities mentioned above
in dependence of each other. To compare the DTDs’ performance
in situations with different NFPRs, it is necessary to choose a fixed
threshold Tpa, where an optimal choice dependents on the cost of a
missed detection or a false alarm in the chosen application. Lacking
such information, the strategy used in [14] was followed, where Tpa
was chosen for each algorithm individually such that a false alarm
probability of 0.3 was achieved. Determination of the threshold and
evaluation where carried out on the same data to ensure an optimum
threshold for each algorithm. This is considered to be crucial for a
meaningful comparion of the algorithms, as intended in this paper.

For all simulations, a sampling frequency of 8 kHz was as-
sumed. Because of computational constraints, the measured impulse
responses where truncated to 1024 samples, the DTDs consider
only K = 512 samples, and the length of the adaptive filters used
to compute (14) were set to 512. For the NLMS algorithm, a step
size of 4 = 0.1 was chosen, while the step size of the GFDAF
algorithm was 1 = 1.5. For the GFDAF algorithm an update was
performed only every 64 time instants for computational reasons
and the exponential forgetting factor was chosen to be 0.95. None
of these adaptive filters considered the decision of their respective
DTD like it would be implemented in real-world scenarios as this
could freeze the system after an echo path change i.e. a change of
h. An adaptive filter used for AEC would consider this decision as
shown in Fig. 1. Note that AEC is beyond the scope of this paper
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and, hence, not evaluated in the following. Independently of the
adaptive filters, the exponential weight A for the statistical estimates
(see(10)) was set to 0.999.

5. EVALUATION RESULTS

In this section, the evaluation results are presented, starting with the
Geigel algorithm (&6 (k)), the cross-correlation method (£c(k)) and
the normalized cross-correlation method using (14) with the nois-
ified true RIR (£8(k)). The results averaged over 16 repetitions of
the experiment described in Sec. 4 are shown in Fig. 3. There, the
ROC shows that the Geigel algorithm is not performing well, while
considering &c(k) and &X (k) leads to improved detection, and is in
agreement with the findings reported in [14]. Note that the approx-
imation of &x(k) by X (k) was used in [14] due to its simplicity,
but relies on the noisified true RIR that is unavailable in real-world
implementations. The disappointing performance of the Geigel algo-
rithm can be explained when considering the missed detection prob-
ability for a fixed threshold as a function of the NFPR in the lower
plot of Fig. 3. There, it can be seen that the Geigel algorithm needs
a high NFPR for a successful detection, which only rarely occurs in
the considered scenarios given the chosen signal levels. It can be
furthermore seen that the performance of the approaches considered
in Fig. 3 is only marginally affected by the number of loudspeaker
channels L. This previously undocumented finding can be explained
by the underlying test statistics that only rely on the cross-correlation
between the loudspeaker and the microphone signals. Although this
vector increases in size with an increased number of channels, the
new data exhibits very similar properties like the data already consid-
ered in the single-channel case. To effectively exploit the small dif-
ferences in those properties, the cross-correlation between the loud-
speaker signals has to be considered. Hence, only slight improve-
ments can be expected, if at all. On the other hand, these results
also show that the performance of these simple approaches does not
degrade with an increasing number of loudspeakers.

While the information available in real-world scenarios would
allow for an exact computation of (13), (14) must be evaluated us-
ing an adaptive filter to estimate h(k) as described for &5(k) and
£5(k). In Fig. 4, using &N (k), &5(k).£5(k), and &n(k) are com-
pared. Note that for &n (k) only 4 repetitions of the experiment where
conducted because computing &n (k) is extremely expensive, which
also precludes using it in any real-world applications. The results
show, that &N (k) approaches the performance of the ¢x(k), rather
than the performance of an implementation using an actual adap-
tive filter, which, to the best of our knowledge, has not been doc-
umented in the literature so far. Moreover, adaptive filters suffer
themselves from the doubletalk activity, which is actually the moti-
vation of using a DTD and implies a conservative parameter choice.
In any case, the performance of a DTD is directly depended on the
robustness and performance of the adaptive filter. This is why the
GFDAF-based test statistic outperforms the approach utilizing the
NLMS algorithm, which was, furthermore, reported to be unsuitable
in multi-channel scenarios [20].

In Fig. 4 it can be seen that the performance in terms of the
ROC:s is also reflected in the missed detection probability as a func-
tion of the NFPR. Furthermore, it can be seen that the detection
performance of &n(k) increases when using multiple loudspeakers.
This is because the larger number of loudspeaker channels leads to
a lower variance of the test statistics. Seen from a different perspec-
tive, each further loudspeaker channel adds additional information
that can be used to estimate microphone signal power in the absence
of doubletalk more accurately.
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In Fig. 5, the detection performance of &3 (k) as a function of the
NFPR is shown for different numbers of loudspeaker channels. For
this experiment, 32 repetitions were conducted to compensate for
high variations in the results depending on the convergence of the
adaptive filter. When comparing Figs. 4 and 5 a crucial dilemma for
this task can be seen: While the increased number of loudspeakers
provides more information to be exploited, it degrades the perfor-
mance of the adaptive filters at the same time. Nevertheless, it is
tremendously expensive to compute (13) such that real-world imple-
mentations will typically rely on those filters such that the approxi-
mation (14) can be used.

6. CONCLUSIONS

The evaluation of different doubletalk detectors showed that meth-
ods that only consider the cross-correlation between loudspeaker and
microphone signals are not significantly affected by the number of
loudspeaker channels. For approaches also considering the cross-
correlation of the loudspeaker signals, a conflict was discovered:
While the increased number of loudspeakers provides more infor-
mation that can be effectively exploited by a DTD, it can degrade
the performance of adaptive filters that are generally necessary for
real-world implementations. Hence, DTDs that do not depend on
an explicit estimate of the echo path can be an attractive subject for
future research.
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