
PARRALELIZATION OF NON-LINEAR & NON-GAUSSIAN BAYESIAN
STATE ESTIMATORS (PARTICLE FILTERS)

Amin Jarrah, Mohsin M. Jamali, S. S. S. Hosseini

Dept. of Elect. Engg. and Computer Science
The University of Toledo, Toledo, Ohio, USA

mohsin.Jamali@utoledo.edu

Jaakko Astola and Moncef Gabbouj

Department of Signal Processing
Tampere University to Technology

Tampere, Finland

ABSTRACT
Particle filter has been proven to be a very effective meth-
od for identifying targets in non-linear and non-Gaussian
environment. However, particle filter is computationally
intensive and may not achieve the real time requirements.
So, it’s desirable to implement it on parallel platforms by
exploiting parallel and pipelining architecture to achieve
its real time requirements. In this work, an efficient im-
plementation of particle filter in both FPGA and GPU is
proposed. Particle filter has also been implemented using
MATLAB Parallel Computing Toolbox (PCT). Experi-
mental results show that FPGA and GPU architectures can
significantly outperform an equivalent sequential imple-
mentation. The results also show that FPGA implementa-
tion provides better performance than the GPU implemen-
tation. The achieved execution time on dual core and quad
core Dell PC using PCT were higher than FPGAs and
GPUs as was expected.

Keywords:

Index Terms— Field Programmable Gate Array (FPGA);
Graphic Processing Unit (GPU); Parallel Architecture; Particle
Filter; MATLAB Parallel Computing Toolbox (PCT)

1. INTRODUCTION

Target tracking has many applications. Multiple mov-
ing target tracking is needed when data is received from
multiple sensors. The data may come from microphones,
geophones, radars, sonars, video cameras, thermal and IR
cameras. Therefore the problem is to deal with multiple
sources with multiple moving targets in a much cluttered
environment and their tracking in a real-time. Environ-
ment may be non-linear and noise can be non-Gaussian.

Tracking algorithms determine the location of sources

and their motion [1-4]. They include source motion dy-
namics and array motion. Source motion is also estimated
in the form of source velocity. Kalman filter has been
used to predict the most likely position and velocity of a
moving target. Kalman filter based approaches for target

This work is partially supported from Fulbright-Tampere
University of Technology Scholar Award 2014-2015.

tracking are considered as linear and Gaussian in nature.
Kalman filter provides a computationally efficient means
to estimate the state of a process.

When the estimated and measurement processes have
non-linear relationship then Extended Kalman Filter
(EKF) approach may be used. An EKF linearizes the
current mean and covariance when the system is consid-
ered as non-linear. It uses partial derivative of the process
and measurement functions. Unscented Kalman Filter
(UKF) which may be superior to EKF is also used and
employs a set of parameterized points to model the non-
linearity [1-4].

Bayesian approaches are useful for non-linear and

non-Gaussian dynamic systems [1-5]. They can help in
providing better performance and be able to associate
estimates at different times. Bayesian methods use prior
tracks of moving objects along with the likelihood of their
current and future positions. Bayesian filters can also be
very good to find true tracks in a very noisy environment
but they are computationally expansive.

A Particle Filter (PF) falls under Bayesian system [1-
5]. Particle filter assumes that the system is non-linear
and non-Gaussian. It uses Monte Carlo simulation for
handling non-linear systems. The particle filter algorithm
will allow use of prior information and evaluate the likeli-
hood function. It uses posterior distribution and weighted
particles forming an independent hypothesis of the state of
various tracks at certain time. Various particles are updat-
ed in time and weighted accordingly. Sometimes large
number of particles is required to solve a given problem.
This leads to a heavy computation burden which prevents
tracking in real-time.

The goal of this work is to exploit parallel processing

and implement particle filter on parallel architectures to
achieve desired computation time appropriate for real-
time applications. Parallel architectures can now be de-
signed using multi-core processors, multi-core DSPs,
GPUs and FPGAs. There are many parallel processing
languages that are available but they are tied to certain
type of platform. MATLAB also offers a Parallel Compu-
ting Toolbox (PCT).

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 2551

Particle filter has been implemented on FPGA and
GPU platforms in this work. Parallel processing tech-
niques are employed. We have also experimented with
MATLAB Parallel Computing Toolbox (PCT) using two
different machines and computed execution time for dif-
ferent number of particles. A performance comparison
between FPGA, GPU and PCT is performed.

The remainder of this paper is organized as follows:
Section two provides an overview of related work. Sec-
tion three discusses various parallel processing platforms.
Section four provides parallel algorithms for particle filter.
Simulation results are presented in Section five. Conclu-
sions are given in Section six.

2. RELATED WORK

Particle filters have been widely studied and many papers
are available in literature for number of years. Their
hardware implementations are very limited. Only few of
many references are provided in this paper [6-13]. In [6],
embedded implementation of the particle filter was per-
formed, but their work does not consider any parallel
implementation strategy or optimization techniques. In
[7], hardware implementation was performed where some
modifications of particle filter were considered. However,
complicated data exchange patterns are required between
processing elements and the control unit for their modifi-
cations. In [8], architecture to reduce memory usage was
proposed by applying dual-port memory, but this prevents
full parallelization of all the particles. Fixed precision
implementation on performance was analyzed in [9].

A recent study applies a GPU-accelerated parti-
cle filter for accelerating the image processing steps of
visual tracking application [10]. However, the particle
filter is only partially executed on the GPU while most of
the particle filter steps were performed on the host CPU.
Another recent study proposed threshold-based
resampling for high-speed particle filtering, but the hard-
ware implementation of the particle filter is complex and
needs more efforts where their implementation causes
performance degradation [11]. A GPU based implementa-
tion of particle filter is described in [12]. They also show
parallelization of the particle filter on GPU. This work
extends to experimentation and implementation with
FPGAs and MATLAB PCT.

3. PARALLEL PROCESSING PLATFORMS

Enormous computing and storage power can now be car-
ried in one’s hand. So far computer industry was fol-
lowing Moore’s law with doubling of transistors every
18 months. This doubling of transistors in a single core
processor came to an abrupt halt some times in 2004.
The performance improvement is running out of steam as
clock rates has topped out for a uniprocessor system.
Power is growing at a faster rate than the clock frequen-
cy. Therefore, power dissipation and various thermal
constraints are hampering the future growth. Power con-
sumption has started to go up. Heat dissipation is becom-

ing a challenge and reliability is also an issue. These fac-
tors of power consumption, clock speed, heat dissipation
and reliability are favoring laws of diminishing results.

Semiconductor manufacturers have realized that
performance increases can only come from increasing
the number of cores. Multi-core is providing perfor-
mance without increased power consumption and in-
creased clock frequency. This work focusses on FPGAs
and GPUs due to ease of their availability and software
infrastructure. The idea is to achieve the real time re-
quirements by exploiting parallel processing. This work
is performed to minimize computation time using paral-
lel processing schemes on available parallel platforms
such as FPGAs and GPUs.

3.1 Field Programmable Gate Arrays (FPGAs)

FPGAs have large amount of logic slices, memory, inter-
connection and other resources that can be programmed
and re-configured for a given task. FPGAs are pro-
grammed using standard Hardware Description Lan-
guages (HDL) such as VHDL or Verilog. FPGAs offer
memory storage in the form of LUTs and block memory.
External memory can also be interfaced with FPGAs via
Double Data Rate (DDR3) memory. An efficient synthe-
sizer can choose any of these memories as storage as part
of the computational process. This work uses Xilinx’s
Vivado synthesizer [14-15] which allows incorporation of
various optimization such as data flow, loop merging,
loop unrolling and pipelining. It also eliminates program-
ming in VHDL as it is perceived to be difficult to program
by many university students (personally talking to stu-
dents for many years). The developed parallel algorithm
will be suitable for FPGA implementation which should
be efficient in terms of latency, area, power consumption,
cost, and flexibility.

3.2 Graphic Processing Units (GPUs)

The GPUs have multi-core architecture consisting of hun-
dreds of cores. Each core contains a grids and each grid
contains threads. There are threads, thread blocks, and
grids of thread blocks that all differentiate themselves
based on memory access and kernel execution. A thread
block is a group of threads that have the ability to cooper-
ate with each other and communicate via the per-Block
shared memory. This type of architecture is attractive for
offloading numerically intensive computations. The com-
bination of high-bandwidth memories and hardware that
performs floating point arithmetic at significantly higher
rates than conventional CPUs makes graphic processors
attractive targets for computational intensive algorithms.

This work uses NVIDIA GForce GTX 260 [16]. It con-
tains 192 cores with graphic and processor clock frequen-
cy of 576 MHz and 1242 MHz respectively. It is pro-
grammed with Compute Unified Device Architecture
platform (CUDA) [17]. A part of the program can be run
either on CPU or GPU. Therefore GPU acts as coproces-
sor operating in Single Instruction Multiple Data (SIMD)

23rd European Signal Processing Conference (EUSIPCO)

2552

http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/VHDL
http://en.wikipedia.org/wiki/Verilog

manner. A parallelized version of the program will run
sequential code on CPU and its parallelized code on GPU.
Generally programs are written in C and any part of the
program that needs to be run on GPU can be specified as
an extension under CUDA. There are libraries that can be
used to facilitate programming in CUDA.

3.3 MATLAB Parallel Computing Toolbox (PCT)

MATLAB offers Parallel Computing Toolbox (PCT) [18].
It allows user to experiment with parallel processing using
their parfor command. PCT offers parallel processing at
loop level using their parfor command. Any of for-loops
in the MATLAB code can be converted into parallel for
loop with following restrictions [18-19].

x No nested parfor loops are allowed. You can
have only one parfor loop. You can have either
top level parfor loop or any other loop inside it.

x Execution of the loop should be independent of
each other. There should be no data
dependencies.

x A parallel for-loop “parfor” can also be inside a
for loop.

x No deletion of variables is allowed.
x Different loops can be executed in different

order.
x Printing and saving of data is allowed inside the

parfor loop.

4. PARALLEL ALGORITHM (PARTICLE FILTER)

Particle filter consists of various computational steps such
as prediction, measurement, weight calculation,
resampling and output estimation [1-7]. It offers opportu-
nities for exploiting parallel processing but also has data
dependencies due to its iterative or updating nature. Its
sequential version with data dependencies is as follows:

1. Predict the new state of the target.
2. Measure the new state of the target.
3. Estimate and update/normalize weights
4. Resample particles after removing particles with

negligible weights.
5. Estimate the output.

Steps one and two predict and measure the new state
of the target. This will be performed through the particles
by using the given non-linear system. Therefore these
steps can be parallelized with size of the loop equivalent
to number of particles. Step three involves the estimation
and normalization of the particle weights [1]. Its weight
estimation can be parallelized. The step identifies the
particles that have the highest probability to represent the
desired target. The weights of few particles will have large
values as time progresses while the remaining weights of
other particles will decrease in their values.

Resampling process in step four will remove small
negligible weights particles and keep the larger one. This
will improve the estimation of the future state by consid-
ering particles of higher posterior probability. Step five
performs output calculations by multiplying the normal-
ized weight by the predicted measurement of the particle.

4.1 Parallel implementation on FPGAs

Xilinx FPGAs and their Vivado synthesizer tool are
used for implementation of particle filter. Full paralleliza-
tion of particle filter can’t be achieved since there is a data
dependency between its computational steps. So, particle
filter is broken into a set of regions to exploit the oppor-
tunity of executing particle filter in parallel on FPGAs.
Details of parallelization of particle filter on FPGA can be
found in our previous work in [13].

The implementation of particle filter can be improved
by applying two optimization techniques:

x Loop merging technique.
x Dataflow technique.

The loop merging technique allows the operations to
be performed in one operation and reduces the additional
overhead. For example, prediction step, measurement
step, and weight calculation can be performed in one loop.
This reduces the overhead from the unnecessary loops as
additional N iteration loops for each step is removed.
Also, weight normalization can be merged with
resampling step. The modified particle filter algorithm is
as follows:

Merged Particle Filter
For i 0 to N {
 Prediction step
 Measurement step
 Weight calculation}
For j 0 to N {
 Normalization step

 Resampling step based on
1

j

m
m

w r

t¦ }

Moreover, it is not necessary for step 2 to wait until

step 1 completes all its iterations. So, step 2 can start exe-
cution after the first iteration of step 1 is completed. This
can be exploited by applying the dataflow technique be-
tween these steps where the data can flow asynchronously
from the first step to the next one. Parallelization of parti-
cle filter on Xilinx FPGA was successfully completed and
results are shown in Section five.

4.2 Parallel implementation on GPUs

Particle filter requires initialization of particle positions.
This step can be fully parallelized by N threads where
each thread is assigned to each particle as shown in the
following code:

Parallel Particle Positions Initialization
int i Thread index;

23rd European Signal Processing Conference (EUSIPCO)

2553

 {Xpart[i] = x + sqrt (Q) * random(); //Q is process
noise covariance

Steps one and two require predicting and measuring
the state of each particle, respectively. These steps can be
fully parallelized by N threads where each thread is as-
signed to each particle as shown in the following code:

Parallelization of Particle Prediction State
int i Thread index;
 {Xpartminus[i] = Xpart[i]+sqrt (Q) * random(); }

Parallelization of Particle Measurement State
int i Thread index;
 {XXpart[i] = H * Xpartminus[i];} //H is the measure-
ment transition matrix}

Moreover, particle filter requires repeating the basic
calculation of random function generator for all the parti-
cles in each iteration. This typically involves a significant
amount of calculation which represents a small fraction of
the total computational effort. So, random number genera-
tion is also parallelized where each thread generates one
random value instead of a large number of values.

Step four requires calculating particle weights. This
step can be fully parallelized by N threads as shown in the
following code:

Parallelization of Particle Prediction State
int i Thread index;
 {Vhat = xmeasured[k] - XXpart[i];
 q[i] = (1 / sqrt (r) / sqrt (π) * exp(-vhat^2 / 2 / R);} //R is
measurement noise covariance

Step five requires the normalization of the particle
weights which needs summing all the particle weights. In
order to parallelize this operation efficiently, we have
divided the particle weights by multiple threads where
each thread sums a group of weights elements into its
local variable. Then the global summation will be per-
formed by adding these local variables. However, this
technique requires a lock and barrier synchronizations to
ensure correct results since the global summation variable
is shared by all the threads. Following code is used to find
the summation value of particle weights.

Parallelization of Particle Weights Summation
int index Thread index;
Tile_Size=Weights_Vector/# of threads.
x=index*Tile_Size.
y =(index+1)*Tile_Size.
For i x to y {
Local_sum_X= Local_sum_X + W_x[i];
__syncthreads();
Global_sum_X+=Local_sum_X;
Unlock_suncronization();

Normalization step requires dividing each particle
weight by the total weights summation. This can also be
fully parallelized by N threads as shown in the following
code:

Parallelization of Particle Weights Normalization
int i Thread index;
 {q[i] = q[i] / Global_sum_X;}

4.2 Parallel implementation using PCT

MATLAB code for particle filter was parallelized
using PCT. Excellent information given in tutorial [19]
was used to restructure the program. All possible for-
loops were converted into parfor loops. A simplified
parallel algorithm for the particle filter is as follows:

*/
Initialize the particle filter.
for k = 1 : tf (No. of points)

parfor i = 1 : N (No. of particles)
Compute predicted next state
Compute measurement values
Compute weights
end

 Normalize the likelihood of each a priori estimate.
Accumulate all values of weights

parfor i = 1 : N
Perform normalization
end

 parfor i = 1 : N
Perform resampling
end

end
*/

Developed parallel algorithm was executed on a dual
core Dell Optiplex 960 with MATLAB and PCT. Number
of cores were initialized to two. System used in this case,
offered limited parallel processing opportunity due to use
of only two parallel loops. Simulation results were higher
than FPGA and GPU results as expected. Execution time
for parallel version with dual core was also higher than
running without use of parallel processing in traditional
MATLAB sequential fashion. This is due to limited num-
ber of cores and large overhead in establishing workers
(parallel operations). Execution time somewhat improved
when program was run on a newer machine (Intel(R)
core(TM) i5-2500 CPU) with four cores, 64-bit operating
system under Windows 7. Execution times are given in
the next section.

5. SIMULATION RESULTS

In order to examine and verify particle filter method, it
must be tested against highly non-linear and non-Gaussian
data. A commonly used and very popular complex system
given in [5] is considered in our work in both the process
and measurements. Plot not shown in this paper indicates

23rd European Signal Processing Conference (EUSIPCO)

2554

that the estimating state is close to the true states which
validate the efficiency of particle filter operation [13].

The particle filter component is synthesized with the
Xilinx ISE [13]. XA7A100TCSG324-1q FPGA device is
used in this work. Number of used FF, LUTs and I/O
blocks are 8724, 15644 and 230 respectively. Power con-
sumption was 2.434 W. The design of the control unit of a
deep pipelined data-path that controls the scheduling has
101 stages. The execution time from the start of execution
until the final output is written for different number of
vector sizes are shown in Table 1.

The execution times of particle filter implementation

for the un-optimized, FPGA, GPU and PCT implementa-
tions are summarized in Table 1. The results show that the
optimized FPGA and GPU implementations perform
much better than un-optimized one. The superior perfor-
mance of the optimized implementation is attributed to the
exploitation of parallel architecture of the FPGA and the
parallelization of the particle filter. The result also shows
that the optimized implementation achieves more speed-
ups with increasing number of particles which is attributed
to the high parallelism and pipelining exploited in the
array architecture.

The execution time for PCT was much higher due to
use of only two workers (cores). Moreover only for-loops
were converted into parfor loops. There is system over-
head and in establishment of two workers that contributed
to higher execution time. MATLAB PCT offered a quick
way to see how parallel processing can be employed in a
simplified fashion. Execution time somewhat reduces
with the use of quad-core and newer machine.

Table 1. Execution time using different platforms
Implementation Number of particles

250 500 1000
Before Optimization (ms) 21.93 43.94 87.5

Optimization with FPGA (ms) 2.823 4.89 7.57

Optimization with GPU (ms) 3.07 6.48 11.86

MATLAB PCT on 2-core (ms) 11464 12336 19001

MATLAB PCT on 4-core (ms) 8169 5394 7771

6. CONCLUSIONS

An optimized FPGA and GPU implementations of
particle filter are developed. This helps in minimizing the
execution time to reach the real time requirements. The
experimental result shows that the FPGA platform pro-
vides lower execution time when compared with GPU
implementations. Execution time with PCT was much
higher as expected as it offered limited number of cores
and had lot of system overheads.

7. REFERENCES

[1] Dan Simon, “Optimal State Estimation,” Wiley
InterScience, 2006.

[2] Y. Boers and J.N. Driesses, Multitarget Particle Filter
Track Before Detect Application, IEEE Proceedings
Radar, Sonar and Navigation, 2003, Vol. 151: p. 351-357.

[3] M. Sanjeev Arulampalam, Simon Maskell, Neil Gordon
and Tim Clapp, A Tutorial on Particle Filters for Online
Nonlinear/Non-Gaussian Bayesian Tracking, IEEE
Transactios on Signal Processing, Feb. 2002, Vol. 50(2):
p.174-188.

[4] Niclas Bergman, Recursive Bayesian Estimation:
Navigation and Tracking Applications, 1999,
http://www.control.isy.liu.se/research/reports/Ph.D.Thesis/
PhD579.pdf

[5] N. J. Gordon, D. J. Salmond, A. F. M. Smith,”Novel
Approach to nonlinear/non-Gaussian Bayesian state
estimation,” IEE Proceedings-F, Vol. 140, No. 2, pp. 107-
113, April 1993.

[6] FLECK, S., AND STRASSER, W. Adaptive probabilistic
tracking embedded in a smart camera. Computer Vision
and Pattern Recognition, 2005 IEEE Computer Society
Conference on 3 (2005), 134–134.

[7] M. Bolic, A. Athalye, P. M. Djuric, S. Hong, “Algorithmic
Modification of Particle Filters for Hardware
Implementation,” Proc. European Signal Processing
Conference, Vienna, Austria, 2004.

[8] A. Athalye, M. Bolic, S. Hong, and P. M. Djuric, “Generic
Hardware Architectures for Sampling and Resampling in
Particle Filters”, EURASIP Journal on Applied Signal
Processing, Vo. 17, pp. 2888 – 2902, 2005.

[9] M. Bolic, S. Hong, and P. M. Djuric, “Finite Precision
Effect on Performance and Complexity of Particle Filters
for Bearing-Only Tracking”, Signals, Systems and
Computers, Vol.1, pp. 838 – 842, 2002.

[10] J. Brown and D. Capson, “A framework for 3-D model-
based visual tracking using a GPU-accelerated particle
filter,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 1,
pp. 68–80, Jan. 2012.

[11] Z. Shi, Y. Zheng, X. Bian, and Z. Yu, “Threshold-based
resampling for high-speed particle PHD filter,” Progr.
Electromagn. Res., vol.36, pp. 369–383, 2013.

[12] G. Hendeby, J. D. Hol, R. Karlson, F. Gustafson,”A
Graphic Processing Unit implementation of the Particle
Filters,” EURASIP Conference, Poznan, 26007. Pp. 1639-
1643.

[13] Amin Jarrah, M. M. Jamali, Soheil Hosseini “Optimized
FPGA Based Implementation of Particle Filter for
Tracking Applications,” National Aerospace Conference
(NAECON), Dayton, Ohio, June 2014.

[14] Artix7 FPGAs from Xilinx, Inc. (www.xilinx.com).
[15] High-Level Synthesis Vivado Simulator from Xilinx,

http://www.xilinx.com
[16] NVidia Corporation, "NVIDIA GeForce GPU

Architecture Overview, Technical Brief", 2012.
[17] NVidia Corporation, CUDA Software Development Kit

5.0. 2012; Available from:
https://developer.nvidia.com/cuda-downloads.

[18] MATLAB Parallel Computing Toolbox (PCT)
www.mathworks.com

[19] Van Te Chow,”Beginners’ Guide to MATLAB Parallel
Computing,” http://vtchl.uiuc.edu/node/537

23rd European Signal Processing Conference (EUSIPCO)

2555

http://www.control.isy.liu.se/research/reports/Ph.D.Thesis/PhD579.pdf
http://www.control.isy.liu.se/research/reports/Ph.D.Thesis/PhD579.pdf
http://www.xilinx.com/
http://www.xilinx.com/
https://developer.nvidia.com/cuda-downloads
http://www.mathworks.com/
http://vtchl.uiuc.edu/node/537

