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ABSTRACT 
Particle filter has been proven to be a very effective meth-
od for identifying targets in non-linear and non-Gaussian 
environment. However, particle filter is computationally 
intensive and may not achieve the real time requirements. 
So,  it’s  desirable  to  implement  it  on  parallel  platforms  by  
exploiting parallel and pipelining architecture to achieve 
its real time requirements. In this work, an efficient im-
plementation of particle filter in both FPGA and GPU is 
proposed. Particle filter has also been implemented using 
MATLAB Parallel Computing Toolbox (PCT). Experi-
mental results show that FPGA and GPU architectures can 
significantly outperform an equivalent sequential imple-
mentation. The results also show that FPGA implementa-
tion provides better performance than the GPU implemen-
tation. The achieved execution time on dual core and quad 
core Dell PC  using PCT were higher than FPGAs and 
GPUs  as was expected. 
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1. INTRODUCTION 
 

Target tracking has many applications. Multiple mov-
ing target tracking is needed when data is received from 
multiple sensors. The data may come from microphones, 
geophones, radars, sonars, video cameras, thermal and IR 
cameras. Therefore the problem is to deal with multiple 
sources with multiple moving targets in a much cluttered 
environment and their tracking in a real-time. Environ-
ment may be non-linear and noise can be non-Gaussian. 

 
Tracking algorithms determine the location of sources 

and their motion [1-4]. They include source motion dy-
namics and array motion. Source motion is also estimated 
in the form of source velocity.   Kalman filter has been 
used to predict the most likely position and velocity of a 
moving target. Kalman filter based approaches for target 
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tracking are considered as linear and Gaussian in nature.  
Kalman filter provides a computationally efficient means 
to estimate the state of a process.  
 

When the estimated  and measurement processes have 
non-linear relationship then Extended Kalman Filter  
(EKF) approach may be used. An EKF  linearizes the 
current mean and covariance when the system is consid-
ered as non-linear. It uses partial derivative of the process 
and measurement functions. Unscented Kalman Filter 
(UKF) which may be superior to EKF is also used and 
employs a set of parameterized points to model the non-
linearity [1-4].  

  
Bayesian approaches are useful for   non-linear and 

non-Gaussian dynamic systems [1-5]. They can help in 
providing better performance and be able to associate 
estimates  at different times. Bayesian methods use prior 
tracks of moving objects along with the likelihood of their 
current and future positions. Bayesian filters can also be 
very good to find true tracks in a very noisy environment 
but they are computationally expansive.  
 

A Particle Filter (PF) falls under Bayesian system [1-
5].  Particle filter assumes that the system is non-linear 
and non-Gaussian. It uses Monte Carlo simulation for 
handling non-linear systems.  The particle filter algorithm 
will allow use of prior information and evaluate the likeli-
hood function. It uses posterior distribution and weighted 
particles forming an independent hypothesis of the state of 
various tracks at certain time. Various particles are updat-
ed in time and weighted accordingly. Sometimes large 
number of particles is required to solve a given problem. 
This leads to a heavy computation burden which prevents 
tracking in real-time.  

 
The goal of this work is to exploit parallel processing 

and implement particle filter on parallel architectures to 
achieve desired computation time appropriate for real-
time applications. Parallel architectures can now be de-
signed using multi-core processors, multi-core DSPs, 
GPUs and FPGAs. There are many parallel processing 
languages that are available but they are tied to certain 
type of platform. MATLAB also offers a Parallel Compu-
ting Toolbox (PCT).    

23rd European Signal Processing Conference (EUSIPCO)

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 2551



Particle filter has been implemented on FPGA and 
GPU platforms in this work. Parallel processing tech-
niques are employed. We have also experimented with 
MATLAB Parallel Computing Toolbox (PCT) using two 
different machines and computed execution time for dif-
ferent number of particles.    A performance comparison 
between FPGA, GPU and PCT is performed. 

The remainder of this paper is organized as follows: 
Section two provides an overview of related work.  Sec-
tion three discusses various parallel processing platforms. 
Section four provides parallel algorithms for particle filter. 
Simulation results are presented in Section five. Conclu-
sions are given in Section six. 

 

2. RELATED WORK 
 

Particle filters have been widely studied and many papers 
are available in literature for number of years. Their 
hardware implementations are very limited. Only few of 
many references are provided in this paper [6-13].  In [6], 
embedded implementation of the particle filter was per-
formed, but their work does not consider any parallel 
implementation strategy or optimization techniques. In 
[7], hardware implementation was performed where some 
modifications of particle filter were considered. However, 
complicated data exchange patterns are required between 
processing elements and the control unit for their modifi-
cations. In [8], architecture to reduce memory usage was 
proposed by applying dual-port memory, but this prevents 
full parallelization of all the particles. Fixed precision 
implementation on performance was analyzed in [9].  

A recent study applies a GPU-accelerated parti-
cle filter for accelerating the image processing steps of 
visual tracking application [10]. However, the particle 
filter is only partially executed on the GPU while most of 
the particle filter steps were performed on the host CPU. 
Another recent study proposed threshold-based 
resampling for high-speed particle filtering, but the hard-
ware implementation of the particle filter is complex and 
needs more efforts where their implementation causes 
performance degradation [11]. A GPU based implementa-
tion of particle filter is described in [12]. They also show 
parallelization of the particle filter on GPU. This work 
extends to experimentation and implementation with 
FPGAs and MATLAB PCT. 

 

3. PARALLEL PROCESSING PLATFORMS 
 

Enormous computing and storage power can now be car-
ried   in  one’s  hand.           So  far  computer   industry was fol-
lowing  Moore’s   law  with doubling of transistors every 
18 months. This doubling of transistors in a single core 
processor came to an abrupt halt some times in 2004. 
The performance improvement is running out of steam as 
clock rates has topped out for a uniprocessor system.  
Power is growing at a faster rate than the clock frequen-
cy. Therefore, power dissipation and various thermal 
constraints are hampering the future growth.  Power con-
sumption has started to go up. Heat dissipation is becom-

ing a challenge and reliability is also an issue. These fac-
tors of power consumption, clock speed, heat dissipation 
and reliability are favoring laws of diminishing results.   
 

Semiconductor manufacturers have realized that 
performance increases can only come from increasing 
the number of cores. Multi-core is providing perfor-
mance without increased power consumption and in-
creased clock frequency. This work focusses on FPGAs 
and GPUs due to ease of their availability and software 
infrastructure. The idea is to achieve the real time re-
quirements by exploiting parallel processing. This work 
is performed to minimize computation time using paral-
lel processing schemes on available parallel platforms 
such as FPGAs and GPUs.  

 
3.1 Field Programmable Gate Arrays (FPGAs) 

 
FPGAs have large amount of logic slices, memory, inter-
connection and other resources that can be programmed 
and re-configured for a given task. FPGAs are pro-
grammed using standard Hardware Description Lan-
guages (HDL) such as VHDL or Verilog. FPGAs offer 
memory storage in the form of LUTs and block memory. 
External memory can also be interfaced with FPGAs via 
Double Data Rate (DDR3) memory. An efficient synthe-
sizer can choose any of these memories as storage as part 
of the computational process. This   work   uses   Xilinx’s  
Vivado synthesizer [14-15] which allows incorporation of 
various optimization such as data flow, loop merging, 
loop unrolling and pipelining. It also eliminates program-
ming in VHDL as it is perceived to be difficult to program 
by many university students (personally talking to stu-
dents for many years). The developed parallel algorithm 
will be suitable for FPGA implementation which should 
be efficient in terms of latency, area, power consumption, 
cost, and flexibility.  

 

3.2 Graphic Processing Units (GPUs) 
 

The GPUs have multi-core architecture consisting of hun-
dreds of cores. Each core contains a grids and each grid 
contains threads. There are threads, thread blocks, and 
grids of thread blocks that all differentiate themselves 
based on memory access and kernel execution. A thread 
block is a group of threads that have the ability to cooper-
ate with each other and communicate via the per-Block 
shared memory. This type of architecture is attractive for 
offloading numerically intensive computations. The com-
bination of high-bandwidth memories and hardware that 
performs floating point arithmetic at significantly higher 
rates than conventional CPUs makes graphic processors 
attractive targets for computational intensive algorithms.  

This work uses NVIDIA GForce GTX 260 [16]. It con-
tains 192 cores with graphic and processor clock frequen-
cy of 576 MHz and 1242 MHz respectively. It is pro-
grammed with Compute Unified Device Architecture 
platform (CUDA) [17]. A part of the program can be run 
either on CPU or GPU. Therefore GPU acts as coproces-
sor operating in Single Instruction Multiple Data (SIMD) 
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manner.  A parallelized version of the program will run 
sequential code on CPU and its parallelized code on GPU.  
Generally programs are written in C and any part of the 
program that needs to be run on GPU can be specified as 
an extension under CUDA. There are libraries that can be 
used to facilitate programming in CUDA. 

 

 
3.3 MATLAB Parallel Computing Toolbox (PCT) 
 
MATLAB offers Parallel Computing Toolbox (PCT) [18]. 
It allows user to experiment with parallel processing using 
their parfor command. PCT offers parallel processing at 
loop level using their parfor command. Any of for-loops 
in the MATLAB code can be converted into parallel for 
loop with following restrictions [18-19].  
 

x No nested parfor loops are allowed. You can 
have only one parfor loop. You can have either 
top level parfor loop or any other loop inside it. 

x Execution of the loop should be independent of 
each other. There should be no data 
dependencies. 

x A parallel for-loop “parfor” can also be inside a 
for loop. 

x No deletion of variables is allowed. 
x Different loops can be executed in different 

order. 
x Printing and saving of data is allowed inside the 

parfor loop. 
 
 
4. PARALLEL ALGORITHM (PARTICLE FILTER) 
 
Particle filter consists of various computational steps such 
as prediction, measurement, weight calculation, 
resampling and output estimation [1-7]. It offers opportu-
nities for exploiting parallel processing but also has data 
dependencies due to its iterative or updating nature. Its 
sequential version with data dependencies is as follows: 

1. Predict the new state of the target. 
2. Measure the new state of the target. 
3. Estimate and update/normalize weights 
4. Resample particles after removing particles with 

negligible weights.  
5. Estimate the output. 

Steps one and two predict and measure the new state 
of the target. This will be performed through the particles 
by using the given non-linear system. Therefore these 
steps can be parallelized with size of the loop equivalent 
to number of particles. Step three involves the estimation 
and normalization of the particle weights [1]. Its weight 
estimation can be parallelized. The step identifies the 
particles that have the highest probability to represent the 
desired target. The weights of few particles will have large 
values as time progresses while the remaining weights of 
other particles will decrease in their values.  

Resampling process in step four will remove small 
negligible weights particles and keep the larger one. This 
will improve the estimation of the future state by consid-
ering particles of higher posterior probability. Step five 
performs output calculations by multiplying the normal-
ized weight by the predicted measurement of the particle.  

4.1 Parallel implementation on FPGAs 
 

Xilinx FPGAs and their Vivado synthesizer tool are 
used for implementation of particle filter. Full paralleliza-
tion  of  particle  filter  can’t  be  achieved  since  there  is  a  data  
dependency between its computational steps. So, particle 
filter is broken into a set of regions to exploit the oppor-
tunity of executing particle filter in parallel on FPGAs. 
Details of parallelization of particle filter on FPGA can be 
found in our previous work in [13]. 

The implementation of particle filter can be improved 
by applying two optimization techniques: 

x Loop merging technique. 
x Dataflow technique. 

The loop merging technique allows the operations to 
be performed in one operation and reduces the additional 
overhead. For example, prediction step, measurement 
step, and weight calculation can be performed in one loop. 
This reduces the overhead from the unnecessary loops as 
additional N iteration loops for each step is removed. 
Also, weight normalization can be merged with 
resampling step. The modified particle filter algorithm is 
as follows: 

Merged Particle Filter 
For i         0 to N { 
  Prediction step  
  Measurement step  
  Weight calculation} 
For j        0 to N { 
  Normalization step  

  Resampling step based on 
1

j

m
m

w r
 

t¦ } 

 
Moreover, it is not necessary for step 2 to wait until 

step 1 completes all its iterations. So, step 2 can start exe-
cution after the first iteration of step 1 is completed. This 
can be exploited by applying the dataflow technique be-
tween these steps where the data can flow asynchronously 
from the first step to the next one. Parallelization of parti-
cle filter on Xilinx FPGA was successfully completed and 
results are shown in Section five. 

 

4.2 Parallel implementation on GPUs 
 

Particle filter requires initialization of  particle positions. 
This step can be fully parallelized by N threads where 
each thread is assigned to each particle as shown in the 
following code:   

Parallel Particle Positions Initialization   
int i         Thread index;  
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   {Xpart[i] = x + sqrt (Q) * random();  //Q is process 
noise covariance 
 

Steps one and two require predicting and measuring 
the state of each particle, respectively. These steps can be 
fully parallelized by N threads where each thread is as-
signed to each particle as shown in the following code:   

Parallelization of Particle Prediction State   
int i        Thread index;  
     {Xpartminus[i] = Xpart[i]+sqrt (Q) * random(); }        
 
 

Parallelization of Particle Measurement State   
int i        Thread index;  
     {XXpart[i] = H * Xpartminus[i];} //H is the measure-
ment transition matrix}          
 
 

Moreover, particle filter requires repeating the basic 
calculation of random function generator for all the parti-
cles in each iteration. This typically involves a significant 
amount of calculation which represents a small fraction of 
the total computational effort. So, random number genera-
tion is also parallelized where each thread generates one 
random value instead of a large number of values.  

Step four requires calculating particle weights. This 
step can be fully parallelized by N threads as shown in the 
following code:   

Parallelization of Particle Prediction State   
int i        Thread index;  
  {Vhat = xmeasured[k] - XXpart[i]; 
 q[i]  =  (1  /  sqrt  (r)  /  sqrt  (π)  *  exp(-vhat^2 / 2 / R);}  //R is 
measurement noise covariance 
 
 

Step five requires the normalization of the particle 
weights which needs summing all the particle weights. In 
order to parallelize this operation efficiently, we have 
divided the particle weights by multiple threads where 
each thread sums a group of weights elements into its 
local variable. Then the global summation will be per-
formed by adding these local variables. However, this 
technique requires a lock and barrier synchronizations to 
ensure correct results since the global summation variable 
is shared by all the threads. Following code is used to find 
the summation value of particle weights.  

Parallelization of Particle Weights Summation  
int index          Thread index; 
Tile_Size=Weights_Vector/# of threads. 
x=index*Tile_Size. 
y =(index+1)*Tile_Size. 
For i         x to y { 
Local_sum_X= Local_sum_X + W_x[i]; 
__syncthreads(); 
Global_sum_X+=Local_sum_X; 
Unlock_suncronization(); 
 
 

Normalization step requires dividing each particle 
weight by the total weights summation. This can also be 
fully parallelized by N threads as shown in the following 
code:   

Parallelization of Particle Weights Normalization   
int i       Thread index; 
  {q[i] = q[i] / Global_sum_X;} 
 
 
4.2 Parallel implementation using PCT 

MATLAB code for particle filter was parallelized 
using PCT. Excellent information given in tutorial [19] 
was used to restructure the program. All possible for- 
loops were converted into parfor loops. A simplified 
parallel algorithm for the particle filter is as follows: 

*/ 
Initialize the particle filter. 
for k = 1 : tf  (No. of points) 

parfor  i = 1 : N (No. of particles) 
Compute predicted next state 
Compute measurement values 
Compute weights 
end 

 Normalize the likelihood of each a priori estimate. 
Accumulate all values of weights 

parfor  i = 1 : N 
Perform normalization 
end 

     parfor  i = 1 : N 
Perform resampling 
end 

end 
*/ 

Developed parallel algorithm was executed on a dual 
core Dell Optiplex 960 with MATLAB and PCT. Number 
of cores were initialized to two.  System used in this case, 
offered limited parallel processing opportunity due to use 
of only two parallel loops. Simulation results were higher 
than FPGA and GPU results as expected. Execution time 
for parallel version with dual core was also higher than 
running without use of parallel processing in traditional 
MATLAB sequential fashion. This is due to limited num-
ber of cores and large overhead in establishing workers 
(parallel operations).  Execution time somewhat improved 
when program was run on a newer machine (Intel(R) 
core(TM) i5-2500 CPU)  with four cores, 64-bit operating 
system under Windows 7. Execution times are given in 
the next section. 

 
5. SIMULATION RESULTS  

 

In order to examine and verify particle filter method, it 
must be tested against highly non-linear and non-Gaussian 
data. A commonly used and very popular complex system 
given in [5] is considered in our work in both the process 
and measurements. Plot not shown in this paper indicates 
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that the estimating state is close to the true states which 
validate the efficiency of particle filter operation [13].  

The particle filter component is synthesized with the 
Xilinx ISE [13]. XA7A100TCSG324-1q FPGA device is 
used in this work. Number of used FF, LUTs and I/O 
blocks are 8724, 15644 and 230 respectively. Power con-
sumption was 2.434 W. The design of the control unit of a 
deep pipelined data-path that controls the scheduling has 
101 stages. The execution time from the start of execution 
until the final output is written for different number of 
vector sizes are shown in Table 1. 

 
The execution times of particle filter implementation 

for the un-optimized, FPGA, GPU and PCT implementa-
tions are summarized in Table 1. The results show that the 
optimized FPGA and GPU implementations perform 
much better than un-optimized one. The superior perfor-
mance of the optimized implementation is attributed to the 
exploitation of parallel architecture of the FPGA and the 
parallelization of the particle filter. The result also shows 
that the optimized implementation achieves more speed-
ups with increasing number of particles which is attributed 
to the high parallelism and pipelining exploited in the 
array architecture.  

The execution time for PCT was much higher due to 
use of only two workers (cores). Moreover only for-loops 
were converted into parfor loops. There is system over-
head and in establishment of two workers that contributed 
to higher execution time. MATLAB PCT offered a quick 
way to see how parallel processing can be employed in a 
simplified fashion. Execution time somewhat  reduces 
with the use of quad-core and newer machine. 

Table 1. Execution time using different platforms 
Implementation Number of particles 

250 500 1000 
Before Optimization (ms) 21.93 43.94 87.5 

Optimization with FPGA (ms) 2.823 4.89 7.57 

Optimization with GPU (ms) 3.07 6.48 11.86 

MATLAB PCT on 2-core (ms) 11464 12336 19001 

MATLAB PCT on 4-core (ms) 8169 5394 7771 

6. CONCLUSIONS 

An optimized FPGA and GPU implementations of 
particle filter are developed. This helps in minimizing the 
execution time to reach the real time requirements. The 
experimental result shows that the FPGA platform pro-
vides lower execution time when compared with GPU 
implementations.   Execution time with PCT was  much 
higher as expected as it offered limited number of cores 
and had lot of  system overheads. 
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