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ABSTRACT

The newly introduced Kubelka-Munk Genetic Algorithm
(KMGA) is a promising technique used in the assessment
of skin lesions. Unfortunately, this method is computa-
tionally expensive due to its function inverting process. In
the work of this paper, we design a Predictive Function
Optimization Algorithm in order to improve the efficiency
of KMGA by speeding up its convergence rate. Using this
approach, a High-Convergence-Rate KMGA (HCR-KMGA)
is implemented onto multi-core processors and FPGA de-
vices respectively. Furthermore, the implementations are
optimized using parallel computing techniques. Intensive
experiments demonstrate that HCR-KMGA can effectively
accelerate KMGA method, while improving its assessment
accuracy as well.

Index Terms— Multi-spectral Image Processing, Light-
Tissue Interaction, Genetic Algorithm, Kubelka-Munk
model, Embedded System, SW/HW Co-design, FPGA, High-
Level Synthesis, High-Performance Computing, POSIX
Thread

1. INTRODUCTION

Usually, well trained dermatologists analyze the skin color
and interpret clinical pathologies depending on their knowl-
edge and experience, which often results in the mistakes
due to subjective judgment. Recently, in order to make the
diagnosis conclusions objective, computer assisted methods
for cutaneous lesions assessment increasingly attracts medical
researchers. More precisely, some image processing systems
are used to minimize the usages of the naked eyes and
quantify more accurately the lesion zone’s optical properties.

The earlier image acquisition devices are normal color
cameras that can only acquire visible light’s color informa-
tion. Meanwhile, it is found that invisible light carries much
more important information than the former. In order to
produce an enhanced information for diagnostic, some novel
sophisticated multi-spectral imaging devices and processing
methods emerged. To our knowledge, two approaches are
usually used to analyse human skin reflectance spectrum. The

Thanks to China Scholarship Council for funding.

978-0-9928626-3-3/15/$31.00 ©2015 IEEE 1631

first is based on statistical analysis of the reflectance spec-
trum, such as partial least squares regressions [1], Support
Vector Machine (SVM) [2], Blind Source Separation (BSS)
[3] or Independent Component Analysis (ICA) and Principal
Component Analysis (PCA) [4]. These techniques assume
that skin reflectance is a combination of different source
components’ spectra weighted by their mixing quantities. The
second is the analysis of the reflectance spectra by means of
physical models of light transportation based on the optical
properties of skin (scattering and absorption). Based on
the modified Beer-Lambert law or Monte-Carlo simulations,
different light propagation models have been developed. The
properties of the model can be obtained from available a-
priori knowledge of the skin absorption spectra and scattering
properties. Thus, compared with the statistical analysis
of the reflectance spectrum, this approach is not affected
when the skin composition is different from the composition
assumption.

Using the knowledge of the skin absorption and scat-
tering properties, a novel multi-spectral skin lesion assess-
ment method, Kubelka-Munk Genetic Algorithm (KMGA),
is proposed by Jolivot et al. in [5]. This method combines
the Kubelka-Munk (KM) model [6] with Genetic Algorithm
(GA) for the optimization process. It can analyze both of
the most important light absorbers (blood and melanin) in the
skin according to the multi-spectral images which is acquired
only by a hand-held multi-spectral camera. However, its
initial prototype is very time consuming due to the low
convergence rate of the evolution process. This shortcoming
seriously hampers the practical application of this technology
as an aid for cutaneous lesions diagnostics. So finding an
efficient function optimization approach for such a skin lesion
assessment method becomes a new challenge.

This paper focuses on the performance improvement of
the KM based skin lesion assessment algorithm. We develop
a novel High-Convergence-Rate KMGA using a predictive
evolution strategy. Our introduced approach can effectively
improve the performances of KMGA in terms of both ac-
curacy and efficiency by speeding up its convergence rate.
Furthermore, a series of optimizations are made to improve
the code efficiency or reduce the hardware consumptions.
In the experiments, we compare HCR-KMGA with KMGA
using different hardware devices. The results indicate that
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our approach achieves higher performances both in terms of
accuracy and efficiency.

The remainder of this paper is organized as follows:
Section 2 specifies the Predictive Function Optimization Al-
gorithm; Section 3 describes the optimizations method carried
out on the prototype of HCR-KMGA and its implementation
processes for different platforms; Section 4 analyzes the
evaluation experiments; finally, a conclusion is given in
Section 5.

2. FUNCTION OPTIMIZATION STRATEGY

Within the Light-Tissue Interaction based skin lesion as-
sessment methods, the total reflectance of the incident light
Ry, can be expressed as a function of the interested skin
parameters with a fixed wavelength. For the KM model, it
can be expressed as:

Rtot = fKM(fmehDepiafbloodycozyaDdermis) (1)

where fmel, Depi’ fblooda Cowy and Dgermis refer respec-
tively to the melanin concentration, epidermis thickness,
volume blood fraction, oxygen saturation and dermis thick-
ness. Equation (1) is a complex non-linear function with
five arguments which is hard to inverse. KMGA opti-
mizes this function according to a standard genetic algo-
rithm. This optimization process is the search heuristic
that mimics the process of natural selection. It generates
solutions to optimization problems using techniques inspired
by natural evolution, such as inheritance, mutation, selection,
and crossover. However, the evolution process of a pure
natural-simulated genetic algorithm is time consuming, and
can easily get trapped into a local optima. This is because GA
always generates the new populations in a random way firstly,
and then selects the best individual according to the fitness
function. This enormously reduces the chance to find a better
individual in the next iteration which results in a very low
convergence rate. In order to improve the performances of the
GA based designs, some researches improved the evolution
process by using the predictive approaches [7, 8]. With
the enlightenment of these efforts, we develop a Predictive
Function Optimization Algorithm (PFOA) that can speed up
the convergence rate of the evolution process by predicting
the possible evolution directions.

Fig.1 illustrates the over-all architecture of PFOA. Like
the conventional GA, the system first initializes randomly
the population. However, in the evolution process, only
best-individual selection process are kept, while crossover-
mutation and random selection are replaced by predictive
evolution and random evolution. After each iteration, the best
individuals are directly copied from the last generation into
the next one for the purpose of fast convergence. Meanwhile,
some of the individuals evolve depending on a prediction
strategy, which can greatly further speed up the convergence
rate of population evolution. Finally, the rest of individuals

1632

Initialise population
Select best individuals
Predictive evolution | < § i 1
No Generate new

Generate new o e
individuals within a individuals with in a
Random evolution predictive search

local search space
space
Yes
Export the best
individual
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are re-performed randomly in order to reduce the possibility
of falling down into a the local optima.

Depending on different fitness functions, designers can
customize different prediction strategies. In KMGA, the
population consists of a few hundred individuals, and in
each iteration, several new genes are generated via crossover-
mutation process. In order to accelerate the convergence
speed of the algorithm, a prediction strategy that can reduce
each iteration’s search space by predicting the evolution
direction is performed as shown in the right of Fig.1.

PFOA first compares the best individuals of the last two
generations, and then takes different steps to adjust the search
space. We base the prediction strategy on the assumption
that higher parameter values had better fitness while z,,_1 >
ZTn—2, and lower parameter values had better fitness while
Tp—1 < Tp—2 (see Fig.2-(a) and (b)). However, this method
is effective only when the present individual is enough far
away from the optima, otherwise a much smaller search space
may be required to enable the algorithm to find a better
individual with as few iterations as possible. Once that
happens, the search space of the n'" iteration will be locked
within the scope around x,,_; in order to enhance the chance
of evolution as shown in Fig.2-(c).

Since the optimization function is unknown, it is impos-
sible to always correctly predict the position of the global
optima. But this mistake can be quickly corrected in the
following iterations. For example, the predicting scope
doesn’t include the optima in Fig.2-(b), and within this scope
no better individual can be found. However, this makes
the algorithm restricts its search space around x,_; in the
following iterations, within which a new best individual can
be easily found at the right of z,, ;.

It should also be noted that sometimes this method may
as well lead the evolution downto a local optima. Thus, after
prediction evolution, some random individuals are performed
in order to avoid it. Unlike GA, PFOA completely regenerates
all the individuals in a random way instead of crossovers or
mutations. This method greatly enriches the sample types of
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Fig. 2. Search space prediction of PFOA: U is the new search space, x,, and f,, are the parameter and fitness value of the n‘"
iteration’s best individual, («], f/) is the local optima and (z,, f,) is the global optima of the optimization function.

genes, the risks of missing the optima is therefore reduced.

3. IMPLEMENTATION DESCRIPTION

We implement a High-Convergence-Rate KMGA (HCR-
KMGA) by combining the KM model with the PFOA.
Considering that the five skin parameters of KM have
different effects on the final fitness, they should be
independently analyzed. Thus, we applies PFOA to all of
them respectively. That is, after the fitness comparison, the
search space of each parameter is defined independently via
the proposed prediction strategy. The algorithm is prototyped
using C language and respectively implemented onto the
multi-core CPUs and an FPGA device. Nevertheless, in order
to improve the performances of the final implementations,
three prototype optimizations are used, including KM
function reducing, individual information optimization and
terminating condition expending.

3.1. Prototype optimization
3.1.1. KM function reducing

According to our test, the population initialization and gener-
ation takes up to 96% of the total execution time in KMGA.
In these process, KM is the key technique. Meanwhile,
the mathematical expression of the KM model is complex.
This results that the C symbolic expression of KM is quite
inefficient to the compiler. Thus, we use a reduced KM
model that is mathematically simplified in our previous work
in order to reduce the unnecessary repetitive operations (see
Section 3.1 of [9]). The computation cost of re-specified KM
model is only 45.85% of its prototype.

3.1.2. Individual information optimization

The individuals of KMGA consist of the optical properties,
the chemical properties and the fitness value. But it is
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well known that the optical properties are performed from
the chemical properties via the KM model. That offers a
nice opportunity to compress the data size of the individual
information by removing out the data that could be computed
immediately. We therefore perform the individual of our
implementations by using only the chemical properties and
fitness value. This optimization can greatly reduce the
hardware consumption in terms of memory.

3.1.3. Terminating condition expending

The evolution process of Genetic Algorithm is terminated
after a number of iterations according to the terminating
conditions. A main issue that always affects the selection
of terminating conditions is that: defining a condition easy
to reach consumes fewer hardware resources but may reduce
the accuracy performances of designs, while a hard condition
may lead to extensive computational time, the algorithm can
even be trapped into an infinite loop. Thus, instead of forcing
the algorithm to end by setting a default iterating limitation,
we expend the terminating conditions from a single to three
independent ones, including max continuous invalid iteration
level, fitness level and total-iteration level. This method can
reduce the resource consumptions by avoiding the redundant
iterations and prevent the evolution from trapping into an
infinite loop as well.

3.2. Implementing flows
3.2.1. CPU

In order to efficiently use the resources of multi-core proces-
sors, we realize the CPU implementations within a POSIX
multi-thread framework as shown in Fig.3. This method
allows us to multiply the speed of the designs by simultane-
ously executing multiple threads depending on the available
core number of the target processor. Considering that the
processing of each pixel is independent, we cut the whole
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Fig. 4. Development process for the FPGA implementation.

lesion image into multiple zones and distribute them to the
different threads. Since the local memory of the threads are
usually quite small, we allocate the image information into
the shared memory and manipulate the target data of each
operation according to their address.

3.2.2. FPGA

The FPGA implementation of the desired algorithm is real-
ized within a High-Level Synthesis (HLS) based SW/HW Co-
design flow (see Fig.4). That is, we synthesize directly the
prototype of HCR-KMGA from C into the textual description
of a circuit diagram for FPGA devices [10]. In additional, for
the purpose to maximize the execution speed of the system
with the hardware constraints, the final implementation is
optimized by directives configurations, including function
inline, loop unroll and array reshape, etc [11]. But it should
be noted that we only partly pipeline our designs in order to
make the resource consumption available to the target device.

4. EXPERIMENT AND ANALYSIS

Section 4 evaluates HCR-KMGA by comparing it with the
conventional KMGA proposed by Jolivot et al. [5, 12]. The
dual core processor P6200, the quad core processor Q6600
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and the Virtex7-XC7VX1140T of Xilinx are selected as the
hardware platforms for an unbias comparison.

Fig.5 displays The average fitness values of our imple-
mentations. It indicates that all the HCR-KMGA implemen-
tations have lower fitness values than the KMGA ones. This
demonstrates that PFOA performs better in terms of accuracy
no matter which hardware platform is used. Meanwhile, it
is also found that the fitness values of the FPGA and CPU
implementations are almost identical. This is because the
HLS based SW/HW Co-design framework that we followed
can well transplant an algorithm specified in C onto the target
device almost without any omissions of functions.

The efficiency performances of our implementations are
compared in Fig.6. Thanks to the prediction evolution
strategy, HCR-KMGA offers an average acceleration gain of
2.08x relative to the implementations of KMGA. Neverthe-
less, the loop-level and instruction-level parallelism enable
FPGAs to appear a much better hardware performances than
CPUs, although it has a lower clock frequency. The average
speed gains due to the platform are 13.21x and 5.93x for
FPGA vs. P6200 and FPGA-HCR-KMGA v.s. Q6600
respectively.

Finally, we compare the hardware resources consumption
of the two FPGA implementations in Table 1. This compar-
ison indicates that HCR-KMGA consumes much less RAM
than KMGA. This is because the data size of individual are
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Components KMGA HCR-KMGA
BRAM 192 32
DSP 2352 2431
FF 467264 493177
LUT 668784 712894

Table 1. Hardware consumption of FPGA implementations.

reduced according to the approach presented in Section 3.1.2,
so there is no need to allocate as much storage space as before.
In contrast, HCR-KMGA consumes more other components
relative to KMGA. This is because PFOA has a more complex
evolution process, HLS has to consume more resources for
the operation control flow. However, this difference is very
tiny, it can even be ignored in practical applications.

5. CONCLUSION

This paper presents a high-convergence-rate evolution al-
gorithm for the Kubelka-Munk model based skin lesion
assessment method. It can accelerate the function optimiza-
tion process of the algorithm by predicting the convergence
direction. In additional, we prototyped a HCR-KMGA
according to the proposed algorithm using C language and
implemented it onto the multi-core CPUs and FPGA devices
for evaluation. Nevertheless, the target implementations are
optimized using POSIX Threads framework and HLS based
SW/HW Co-design flow. The experiments demonstrate that
PFOA can effectively improve the performances of KMGA
both in efficiency and accuracy. Furthermore, FPGA devices
may achieve more acceleration gains for this design. We
believe that the achievements of this work can bring rich
enlightenment to the studies for computer assisted fast skin
lesion assessment and accelerate the commercialization of
KMGA method.
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