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ABSTRACT
In wireless acoustic sensor networks (WASNs), sampling rate
offsets (SROs) between nodes are inevitable, and recognized
as one of the challenges that have to be resolved for a coher-
ent array processing. A simplified free-space propagation is
considered with a single desired source impinging a WASNs
from the far-field and contaminated by a diffuse noise. In this
paper, we analyze the theoretical performance of a fixed su-
perdirective beamformer (SDBF) in presence of SROs. The
SDBF performance loss due to SROs is manifested as a dis-
tortion of the nominal beampattern and an excess noise power
at the output of the beamformer. We also propose an iterative
algorithm for SROs estimation.The theoretical results are val-
idated by simulation.

Index Terms— Blind synchronization, Wireless acoustic
sensor network, Sampling rate offset

1. INTRODUCTION

The use of wireless acoustic sensor network (WASN) as a
speech processing tool has recently attracted a significant re-
search attention. Along with the appealing advantages offered
by WASNs, some new challenges arise. One of the challenges
is the synchronization between WASN nodes. Contrary to a
centralized microphones array, where all signals are sampled
with the same clock, the sampling process in each WASN
node relies on its local clock source, thus, sampling rate off-
sets (SROs) are inevitable.

Clock synchronization in distributed sensors network
has been addressed in the literature, in a wider context than
speech processing - e.g. in [1], [2]. This important topic
was also considered in general speech/audio processing ap-
plications, such as echo cancelation [3], and blind source
separation [4]. In WASN, the synchronization techniques
can be classified in two groups: the time stamps approach
which utilizes the communication links between the sen-
sors to distribute synchronization data in the network, and
a blind approach which only utilizes the acoustic signals.
Early works using the time stamps approach are [5] and [2].

Recently, a comprehensive study was presented in [6], where
synchronization is carried out using combined hardware and
software methods. The blind approach was also a subject for
a considerable amount of research [7], [8], [9]. The general
idea is to model the distortion imposed by the SRO on the
audio signals and to estimate the SROs in the WASN with
respect to (w.r.t.) an acoustical signal from a reference node.

In the current contribution, we adopt the blind approach.
The SRO effect is modeled as a time-varying delay between
the signals. Using this approximation we theoretically ana-
lyze the SDBF beampattern, and the excess noise power at
the output of the SDBF in presence of SRO. Furthermore,
we propose an iterative algorithm for SRO estimation. The
algorithm is based on maximizing the coherence between the
WASN signals, in the short-time Fourier transform (STFT)
domain.

The rest of the paper is organized as follows. In Sec. 2 the
problem is formulated. In Sec. 3 SDBF performance degrada-
tion due to SRO is analyzed. In Sec. 4 we describe the SROs
estimation algorithm. The performance of the proposed meth-
ods is evaluated in Sec. 5. We conclude this paper by a short
discussion in Sec. 6.

2. PROBLEM FORMULATION

Consider a WASN comprising M microphones, aiming at en-
hancing a desired speech signal in the presence of a spheri-
cally isotropic noise field, also known as diffuse noise field.
In the STFT domain, the speech signal is denoted s(l, k), the
speech steering vector is denoted g(k), and the noise at the
mth microphone is denoted vm(l, k), where l is the frame in-
dex, and k = 0, . . . ,K − 1 is the frequency index. The STFT
analysis window length is denoted L. The speech enhance-
ment is accomplished by applying the minimum variance dis-
tortionless response (MVDR) beamformer. In the sequel, the
term nominal will correspond to values used for designing the
beamformer. The nominal array signal is given by:

zn(l, k) = g(k)s(l, k) + v(l, k). (1)
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For the sake of simplicity, we assume in the sequel that each
node comprises a single microphone. Denote the sampling
rate at the mth microphone as fs,m. Without loss of general-
ity, the sampling rate of the mth node is defined in terms of
the sampling rate of the first (reference) node, fs, as fs,m =
fs/am where a1 = 1. The identity between the SRO phe-
nomenon and time-scaling was introduced in [9]. Using this
identity, we can formulate the actual array signal as:

zu(l, k) =


s̃1(l, k) 0 · · ·

0
. . . 0

... 0 s̃M (l, k)


 g̃1(k)...
g̃M (k)

+

 ṽ1(l, k)...
ṽM (l, k)

 ,
(2)

where s̃m(l, k) and ṽm(l, k) are the STFTs of the time-scaled,
continuous-time, speech and the noise signals, s(amt) and
vm(amt), respectively with t denoting the continuous-time
axis. Similarly, g̃m(k) is the discrete Fourier transform of the
time-scaled, sampled, impulse response between the speech
and the mth sensor gm(amt).

For the sake of simplicity, we are considering a free-field
scenario and a linear microphone array consisting of M mi-
crophones with dm being the distance between the mth mi-
crophone and the reference (first) microphone. Although we
assume a linear array in this paper, all the results can be read-
ily extended to an arbitrary three-dimensional WASN config-
uration. The speech signal is impinging on the array from a
far-field with a direction of arival (DOA) denoted by θ. Ac-
cordingly, the MVDR which is a SDBF in our case, is solely
defined by the geometrical properties of the setup:

w(k) =
Γ−1vv (k)g(k)

gH(k)Γ−1vv (k)g(k)
, (3)

where Γvv(k) is the spatial coherence matrix of the diffuse
noise with [Γvv(k)]i,j = sinc

(
2π(di−dj)

λk

)
, λk = c

fs

K
k is the

wavelength corresponding to the kth frequency index, c is the
sound velocity in the medium, and the steering vector g(k) is
given by:

g(k) =

[
e
−j2π d1λk cos(θ)

, · · · , e−j2π
dM
λk

cos(θ)

]T
. (4)

In the scope of this work we examine the performance of
w(k) when applied to the unsynchronized signal zu(l, k), and
propose a method for estimating the SROs {am}Mm=2.

3. SDBF PERFORMANCE ANALYSIS WITH SRO

We turn now to the derivation of a simplified expression for
zu(l, k). We consider themth microphone signal as a function
of the continuous-time tm, with time axis tm related to the
time axis of the first microphone signal by tm = amt1, and
am = 1 + εm is the respective SRO. The continuous-time tm

can be defined in terms of t1, as proposed in [8]:

tm = (1 + εm)t1 = (1 + εm)(t1 − Tl) + (1 + εm)Tl =

= t1 − Tl + εm(t1 − Tl) + εmTl + Tl, (5)

where Tl is the center of the lth frame at the first microphone.
Considering the lth frame, t1 is within the range of Tl− L

2fs
≤

t1 ≤ Tl+ L
2fs

, and hence |εm|(t1−Tl) ≤ |εm| L2fs . Assuming
both εm and L are sufficiently small, the term εm(t1−Tl) can
be neglected, resulting in:

tm − Tl ≈ t1 − Tl + εmTl. (6)

Based on (6), and the properties of the STFT we can approxi-
mate the SRO effect on the speech and the noise signals in the
STFT domain as follows:

s̃m (l, k) ≈ s(l, k)ej2πfs
k
K εmTl = s(l, k)ejπkεml, (7a)

ṽm (l, k) ≈ vm(l, k)ej2πfs
k
K εmTl = vm(l, k)ejπkεml, (7b)

while the rightmost term in (7a) and (7b) are obtained, with-
out loss of generality, for analysis window length of L = K,
and 50% overlap between successive frames. In this case, we
can substitute: Tl = L

2fs
l.

Consider gm(k) = e
−j2π dmλk cos(θ), the discrete Fourier

transform of the sampled, nominal, impulse response between
the speech source and the mth sensor gm(t). Due to SRO, the
time axis of the impulse response is scaled by am. When
applying the discrete Fourier transform to the time-scaled,
and sampled impulse response, the kth frequency index cor-
responds to a continuous-time signal with a wavelength of
amλk, instead of λk in the nominal case. An approximate ex-
pression for g̃m(k) results in by replacing the term 1/am with
its first-order Taylor series approximation 1− εm:

g̃m(k) = e
−j2π dm

amλk
cos(θ) ≈ (8)

≈ e−j2π
dm
λk

cos(θ) · ej2π
dm
λk

cos(θ)εm .

A simplified expression for zu(l, k) is obtained by substi-
tuting (7a), (7b), and (8) in (2):

zu(l, k) ≈ Es(l, k)g(k, θ)s(l, k) + E(l, k)v(l, k) (9)

where the SRO effect is modeled by the diagonal matrices
Es(l, k) and E(l, k):

Es(l, k) =


e
jπ

(
2d1
λk

cos(θ)+kl
)
ε1 0 · · ·

0
. . . 0

... 0 e
jπ

(
2dM
λk

cos(θ)+kl
)
εM

 ,
(10)

E(l, k) =


ejπklε1 0 · · ·

0
. . . 0

... 0 ejπklεM

 .
(11)
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Consider the effect of the SRO on the beampattern of the
SDBF applied to zu(l, k). The nominal beampattern of the
SDBF is defined by Bn(k, θ) = wH(k)g(k, θ). Accord-
ingly, by comparing (9) to (1), the beampattern of the nomi-
nal beamformer w(k) applied to the unsynchronized signals
is given by:

B(l, k, θ) = wH(k)Es(l, k)g(k, θ). (12)

Note, that the beampattern in the unsynchronized case is time-
dependent, due to the drifting delay. The excess noise power
at the output of the unsynchronized beamformer is defined as:

R
4
=
E
{
‖vsro‖2

}
E {‖vn‖2}

=
wH(k)E(l, k)Γvv(k)EH(l, k)w(k)

wH(k)Γvv(k)w(k)
=

= γ(l, k) · 1

gH(k)Γ−1vv (k)g(k)
, (13)

where:

γ(l, k) = gH(k)Γ−1vv (k)E(l, k)Γvv(k)EH(l, k)Γ−1vv (k)g(k).
(14)

In conclusion, the beampattern of w(k) applied to zu(l, k),
and the excess noise power due to SROs are given by equa-
tions (12) and (13), respectively.

4. SRO ESTIMATION AND COMPENSATION

In this section we propose an algorithm for estimating
{am}Mm=2. The algorithm is based on maximizing the co-
herence between the reference node signal and the mth node
signal in the STFT domain. The effectiveness of coherence-
based algorithm was shown in [7], [8], and [9]. Here we
present an iterative algorithm based on the approximate SRO
model (9). We start by noticing that in practical network
configurations 2dm

λk
cos(θ) + kl ≈ kl for l � 1. Thus, for

l� 1 we observe that Es(l, k) ≈ E(l, k) and the array signal
can be further approximated by:

zu(l, k) ≈ E(l, k) (g(k, θ)s(l, k) + v(l, k)) . (15)

From (15) it is clear that the performance degradation due
to SRO can be compensated by multiplying the array signal
by E−1(l, k). Since E−1(l, k) is diagonal the SROs w.r.t. the
reference (first) node can be compensated at each node inde-
pendently. The compensation at the mth node is carried out
by multiplying its signal by [E−1(l, k)]mm = e−jπklεm . In
practice, the parameters {εm}Mm=2 are unknown, and should
be estimated from the data. Since the coherence between syn-
chronized signals is higher than the respective coherence of
the non-synchronized signals, even in a reverberant and mul-
tiple speakers scenario [9], we can obtain an estimate of the
SRO by maximizing the coherence. Accordingly, an estimate

for εm can be derived by solving the following optimization
problem:

ε̂m = argmax
ε′m

{
|Jm(k, ε′m)|2

}
, (16)

Jm(k, ε′m)
4
=

1

LJ

LJ−1∑
l=0

(zu
1(l, k))∗ · zu

m(l, k)e−jπklε
′
m , (17)

where Jm is the sample covariance between the reference sig-
nal and the signal from themth node with SRO compensation
of ε′m, and LJ is the number of frames used for calculating
Jm. We are not familiar with a closed-form solution to (16).
However, the optimization of the cost function w.r.t. ε′m can
be carried out using the gradient acescent method:

ε̂m(i+ 1) = ε̂m(i) + β · ∇ε̂m |Jm(k, ε̂m(i))|2, (18)

with β being the stepsize, and i the iteration index. The gradi-
ent term is obtained by calculating the derivative of Jm w.r.t.
ε′m and straightforward algebra:

∇ε′m |Jm(k, ε′m)|2 =
∂

∂ε′m
|Jm(k, ε′m)|2 =

=
2πk

LJ
Im

{
J∗m(k, ε′m)

LJ−1∑
l=0

l · (zu
1(l, k))

∗ · zu
m(l, k)e−jπklε

′
m

}
.

(19)

From the estimates of {εm}Mm=2, an estimate of E−1 is de-

duced by
((( hhh
[E−1(l, k)]mm= e−jπklε̂m . The SRO can be com-

pensated by multiplying the array signal with
(( hh
E−1(l, k). In

general, estimation is never error-free, hence, even after com-
pensating for the SRO with the proposed technique, (12) and
(13) can be used to analyze the performance degradation due
to the SRO estimation error, in this case {εm}Mm=2 will rep-
resent the uncompensated residual SRO rather than the SRO
itself.

5. EXPERIMENTAL STUDY

In this section we verify the methods proposed in Sec. 3 and
Sec. 4. For that purpose, a simulative benchmark has been
designed. Two simulative studies were carried out. The first
is aiming at verifying the SDBF beampattern, and the excess
noise power models derived in (12), and (13), respectively.
The second study is aiming at analyzing the performance of
the SRO estimation algorithm (18).

5.1. SRO effect on SDBF

In this study, a uniform linear array with M = 4 micro-
phones spaced by 11 cm was used. A speech signal imping-
ing on the array from the far-field with DOA equal to θ =
600 is simulated in a noise-free environment. The unsyn-
chronized signals were generated by re-sampling the synchro-
nized signals with randomly selected SROs, denoted SROm,
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for m = 2, . . . ,M . The average SRO is denoted SRO =
1

M−1
∑M
m=2 SROm. The array gain towards an unsynchro-

nized signal arriving from 00 ≤ θ ≤ 1800 was calculated
as a power ratio of the signal at the output of the SDBF and
the signal of one of the microphones. This empirical gain is
denoted by Bsim.

A comparison between Bsim(θ) and B(θ) as defined by
(12) is presented in Fig. 1. Clearly, the analytically derived
beampattern is in a very good agreement with the empirical
one. The effect of the beampattern variation in time is also
exemplified in Fig. 1, by comparing the upper and the lower
figures. The nominal beampattern of the SDBF Bn and the
average (over time) beampattern B due to SRO = 100 PPM
are also depicted in both figures in Fig. 1.

Fig. 1. Empirical vs. analytical beampatterns of SDBF.

The sensitivity of the SDBF to SROs is analyzed in Fig. 2.
As seen from the upper figure, the average beampattern due
to SRO = 1 PPM is reasonably similar to the nominal one.
However, the average beampattern due to a modest imperfec-
tion of SRO = 10 PPM is far from the nominal one, as shown
in the bottom plot. Note that, the level of the SRO affect the
rate at which the beampattern varies. However, even for the
smallest SRO, after enough time has elapsed the beampattern
will be very different from the nominal one.

To evaluate the excess noise power model (13), a dif-
fuse noise vn(l, k) was generated by the procedure proposed
in [10]. SROs with SRO = 100 PPM were introduced to
the synchronized noise signals, resulting in vu(l, k). The em-
pirical excess noise power Rsim was calculated as the power
ratio between SDBF response to vn(l, k) and SDBF response
to vu(l, k). A comparison between Rsim and R as defined
by (13) is summarized in Table 1. It is interesting to note that
the noise reduction at a high frequency is almost unaffected
by the SRO. This is due to the characteristic of the diffuse
noise, which is known to become incoherent at higher fre-
quencies [10], and hence its reduction is not affected by the

Fig. 2. SDBF beampatterns for various SROs.

SRO. On the contrary, the noise reduction at low frequencies
is degrading with time.

f [Hz] l Rsim[dB] R[dB]
300 5 2 1
1500 5 0.3 0
300 150 16 18
1500 150 −0.4 0

Table 1. Analytical and empirical excess noise power at the
output of the SDBF.

5.2. Iterative estimation of SRO

In this part of the work, we are evaluating the proposed SRO
estimation technique (18). The experimental setup is similar
to the one described in Sec. 5.1, with an exception of both dif-
fused noise, and speech signal being simultaneously present.
The signal to noise ratio (SNR) was set to 10 dB. In the se-
quel we discuss the SRO estimation for the second micro-
phone (m = 2) as an example. Similar procedure can be
applied to any microphone m = 2, . . . ,M . The SRO was set
to 100 PPM. The analysis window is set to L = 1024, and
LJ = 150 frames were used for estimating the SRO.

The performance of the gradient acescent procedure is de-
picted in Figs. 3 and 4. It is readily observed that the cost
function |J2(k, ε2)|2 is, in general, non-convex. Hence, con-
vergence of (18) to the global maximum cannot be guaran-
teed. Indeed, the procedure is trapped in a local maximum
due to poor initialization, as shown in Fig. 3.

A successful estimation of ε2 is depicted in Fig. 4. It is
easily verified that the cost function is getting smoother when
a lower frequency band is considered, which facilitates suffi-
cient estimation performance in this example. It should be
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Fig. 3. Gradient Acescent trapped in a local maximum due to
poorly chosen initial conditions.

noted that the slope of the cost function is getting moder-
ate once a very low frequency band is considered, which also
hampers the estimation performance. The above observations
dictate that a proper frequency selection methodology is re-
quired in order to successfully estimate the SROs using the
proposed iterative method. However, such a methodology is
beyond the scope of the current contribution and will be a
subject for a future study.

Fig. 4. Cost function |J2|2 and the Gradient Acescent learning
curve.

6. SUMMARY

A synchronization between WASN nodes is considered in this
work. The SDBF performance loss due to SRO is manifested
as a distortion of the nominal beampattern and an excess noise
power at the output of the beamformer. An iterative tech-
nique for SROs estimation was proposed. The methods and
techniques presented were validated by simulations and their
limitations were exemplified.
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