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ABSTRACT 
 

Saliency models are able to provide heatmaps highlighting 
areas in images which attract human gaze. Most of them are 
designed for still images but an increasing trend goes towards 
an extension to videos by adding dynamic features to the 
models. Nevertheless, only few are specifically designed to 
manage the temporal aspect.  

We propose a new model which quantifies the rarity natively 
in a spatiotemporal way. Based on a sliding temporal 
window, static and dynamic features are summarized by a 
time evolving “surface” of different features statistics, that 
we call the “hyperhistogram”. The rarity-maps obtained for 
each feature are combined with the result of a superpixel 
algorithm to have a more object-based orientation. The 
proposed model, Hyperaptor stands for hyperhistogram-
based rarity prediction. The model is evaluated on a dataset 
of 12 videos with 2 different references along 3 different 
metrics. It is shown to achieve better performance compared 
to state-of-the-art models. 

Index Terms— Visual attention, Saliency, Rarity Mechanism, 
Optical Flow, Hyperhistogram 

1. INTRODUCTION 
 

The visual saliency models aim to automatically predict 
human attention. In [1][3], the human attention has been 
introduced and can be defined as the process that allows one 
to focus on some important stimuli at the expense of others. 
Two main processes can be defined in human attention called 
bottom-up and top-down. The most salient objects are found 
using features extracted from the signal with the bottom-up 
approach while the top-down attention uses a priori task-
oriented or scene knowledge to modify the bottom-up 
saliency. Even if at a first glance there are lots of attention 
models, the philosophy behind is the same: identify unusual 
features in a given spatio-temporal context by searching rare, 
novel or surprising information. Attention models application 
are very numerous. Among the existing applications, one can 

find gaze prediction [3], content aware compression [4], 
video retargeting [5] or video summary [6].  

Itti et al. [7] proposed a static model based on three 
features: color, luminance and orientation. Harel et al. [8] 
improve this model to create features maps at multiple spatial 
scales and propose a Graph-Based Visual Saliency model 
(GBVS). This approach builds a fully connected graph over 
all grid locations of each feature map. Weights are assigned 
between nodes that are inversely proportional to the 
similarity of feature values and their spatial distance. In [9], 
Marat et al. propose a model that is inspired by the biology of 
the visual system, and breaks down each frame of a video 
intro three maps: 1) a static saliency map emphasizes regions 
that differ from their context, 2) a dynamic saliency map 
emphasizes moving regions and 3) a face saliency map 
emphasizes areas where faces are detected. Finally, they fuse 
all these maps into a master saliency map. 

The saliency model of Rahtu et al. [10] has the advantage 
to be multi-scale, does not require training and is computed 
in the CIE Lab perceptual color space. To take into account 
the movement in the scene, motion intensity is added as an 
input feature. 

Build upon [11][12], a Spatio-Temporal saliency model 
based on Rarity (ST-RARE) has been proposed in [13] and 
integrate dynamic features like motion amplitude and 
direction. A temporal filtering is also used to be more robust 
in the time. 

In this paper, we propose a new hyperhistogram-based 
rarity prediction model called Hyperaptor. The contributions 
of this paper are 1) a new way to extract features with more 
temporal information, 2) a new process to select important 
features based on a surface of rarity, 3) a final map 
enhancement using a SLIC algorithm [14], a center Gaussian 
and a tracker. These contributions lead to a better model in 
eye gaze and salient objects prediction. It is more stable 
through time and more object-oriented. 

The paper is structured as follows. In Sec. 2, Hyperaptor 
is described in detail. Sec. 3 provides an evaluation of the 
proposed model on a wide variety of videos against eye-
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tracking data and manually objects segmentation. Finally, 
Sec. 4 presents a discussion and conclusion. 
 

2. HYPERAPTOR MODEL 
 

 
Figure 1 Overview of Hyperaptor. From top to down: (1) features 
extraction on a sliding video cube, (2) low level priors and multi-
scale rarity mechanism applied on features maps cube, (3) fusion 
steps, and (4) post-processing (temporal stabilization, high level 
priors and object oriented mechanism).   

Figure 1 represents the overall schema of Hyperaptor. A 
sliding “cube” (2D + t) is used to extract both spatial and 
temporal features in the video. After pre-processing of those 
features, their rarity based on the hyperhistograms is 
computed. These hyperhistograms are a temporal 
concatenation of all the histograms of features which are 
extracted in each frames in the cube. Low-level priors as 
specific behavior on colors are also added. A fusion of the 
different rarity feature maps is achieved and stabilized 
temporally using attention history. Finally, high level features 
(like face detection) and a superpixel algorithm are added to 
the model to provide an object-based approach. In the 
following subsections, we detail each of the algorithm steps.  
 

2.1. Feature extraction  
 

A video cube (x, y, t) is built with a temporal sliding window, 
that has been empirically fixed at 15 frames, to have static 
and dynamic information from the current frame but also the 
previous ones. Six static features are extracted from this 
video; three color feature cubes (luminance and two 
chrominances) are defined in the CIE Lab color space and 
eight orientation maps realized with a Gabor filter and 
combined together at three different scales allowing to have 
three texture feature cubes at three different scales. 
The optical flow from [15] computed on the luminance 
component only is used to create two dynamic feature cubes 
(one for motion amplitude and the other one for motion 
direction). To manage the camera motion, a global motion 
subtraction, which is based on the mean value, is used. Two 
temporal features are extracted from the optical flow: the 
motion amplitude A and direction D, defined as: 

ܣ ൌ ට∆²ݔ ൅  ²ݕ∆

ܦ ൌ ,ݕ∆2ሺ݊ܽݐܿݎܽ  ሻݔ∆
 
Where ∆ݔand ∆ݕ are the vector components obtained by the 
optical flow. These features are put together to build two 
cubes of dynamic features. 
 

2.2. Low-level priors and multi-scale rarity mechanism 
 

Two low-level prior maps are computed for spatial features 
maps from [16]: 1) the first is related to frequency. Indeed, 
the human behavior can be modeled by band-pass filtering. 
2) The second is about colors. Some studies [16] find that 
warm colors, such as red and yellow, are more pronounced to 
the human visual system than cold colors. 
A rarity mechanism is then applied on each feature map 
(temporal and spatial). The primary idea comes from [12][17] 
and is based on the fact that a feature is not necessary salient 
alone, but only in a specific context. Here it was extended to 
have a real temporal behavior. Indeed, the mono-dimensional 
feature histogram used on a frame becomes a hyperhistogram 
which is a 2D surface (Figure 2(b)).  

1 

2 

3 

4 

Saliency 
Frame 

Spatial features Temporal features 

23rd European Signal Processing Conference (EUSIPCO)

1537



The rarity mechanism is illustrated in Figure 2 on the 
luminance component in 3 steps: a) a Gaussian pyramid 
decomposition provides features maps cube at different 
scales, b) for each cube, a histogram surface 
(hyperhistogram) is processed, c) the self-information is 
computed on the entire hyperhistogram, but only the current 
frame is extracted.  

 
Figure 2 Illustration of the rarity mechanism on a single scale of 
the luminance features maps cube (a). A rarity function (c) at the 
time t is computed from a histogram surface (b) to obtain a rarity 
luminance map (d). 

This mechanism provides higher scores for locally (in space 
and time) contrasted and globally (in space and time) rare 
regions. 
 

2.3. Fusion 
 

The fusion process has two main steps: 1) the spatial features 
mas are combined with the low-level priors map with a max 
fusion. The maximum value between the two maps is taken 
for each pixel. 2) These rarity spatial maps are then combined 
with the temporal features maps. Based on [18], the maps 
which have important peaks compared to their mean have a 
higher weight. A single saliency map is finally obtained. 
 

2.4. Post-processing and enhancement 
 

The saliency map obtained in the previous section is still 
enhanced using three different techniques.  
Firstly, there is a post-processing step which performs 
temporal stabilization based on a mean of a short history of 
saliency map of previous frames.  
Secondly, high-level priors are added. Previous studies [20] 
have shown that salient information is mainly located in the 
center of images for natural images. To model this prior, a 
centered Gaussian is used.  
Finally, a SLIC algorithm [14] is used with DBSCAN [23] to 
extract superpixels in the frame. Those superpixels are groups 
of pixels with similar color levels. They extract shape 

information from the objects in the frame. The saliency map 
is averaged for each superpixel. In that way, the final map 
will be more object-oriented approach.   
 

3. PERFORMANCE EVALUATION 
 

3.1. Dataset and metrics 
 

The STRAP video benchmark is based on [16] which provide 
12 raw videos with eye tracking data and three manually 
segmented masks and nine other manually segmented binary 
masks have been made to cover the whole set of 12 videos. 
This new database is available on [20]. Figure 3 shows three 
different video sequences examples extracted from the 
database with the original frame on the left column, the 
manually segmented mask ground truth on the middle 
column and a heatmap of the eye tracking ground truth on the 
right column.  
 

Figure 3 Extract from the database with two references. First line: 
Hall, second line: Mobile, Third Line: Soccer. First column: 
Original videos, Second column: Manual binary map, Third 
column: Heatmap of the eye tracking ground truth 
 

To compare the results of Hyperaptor with different other 
video saliency models, three different metrics are used. Based 
on the eye tracking data, the Area Under the ROC curve 
(AUROC) [21] focuses on saliency location at gaze positions. 
The Normalized Scanpath Saliency (NSS) [22] focuses on 
saliency values at gaze positions. For AUROC and NSS, high 
scores indicate better performance on the eye-tracking 
ground truth. For the manually segmented objects ground 
truth, the F-measure metric is used. This metric is based on 
true positives (tp), true negatives (tn), false positives (fp) and 
false negatives (fn) that compare the predicted results with 
the reference results. It is defined as a combination of the 
Precision and the Recall where Precision is the number of 
relevant points compared with the total number of points 
found and Recall is the number of relevant points compared 
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with the total number of important points in the reference. 
This metric shows the capacity of the approach to predict the 
salient object and not only the eye gaze. 
 

3.3. Experimental results 
 

To validate Hyperaptor, qualitative and quantitative 
experimentation has been done. Figure 4 shows the 
qualitative results of three different video attention models as 
heatmaps superimposed on the current frame. Blue means 
areas which are not important while red, the regions of 
predicted interest. On the first column of Figure 4, we can see 
that our approach defines well the salient objects. For 
STRARE (middle column), the salient objects are well 
identified for Hall and Soccer video sequences (video frames 
in the 1st and 3rd lines) but the model highlights also part of 
the background which is not what it should be. For the frame 
extracted from the Mobile video sequence (the middle line), 
the ball is not detected as salient. For GBVS (3rd column), the 
approach works well only for Hall video sequence.  
To compare the heatmaps with the ground truth, please refer 
to Figure 3. 
 

 

Figure 4 Visual results as Heatmaps (superimposition of the 
original frame with the saliency map. High saliency=red). Columns 
from left to right; HYPERAPTOR– STRARE – GBVS. 
 

For the quantitative validation in Figure 5, the three 
previously described metrics are used to compare 4 state-of-
the-art saliency algorithms and a constant centered Gaussian. 
It can be seen that with the AUROC metric, our model is 
third. This is due to the fact that this metric is strongly 
influenced by the centered Gaussian which is found in the 
Gaussian model and  in GBVS.  
The NSS metric is complementary to the AUROC. It can be 
seen that following this metric, our approach is statistically 
better than the state-of-the-art.  
When we compare Hyperaptor with the other models on the 
manually segmented objects ground truth using the F-

measure, Hyperaptor statistically overpasses all the other 
methods that , we remain, are not natively object-oriented. 
Figure 5 shows that Hyperaptor is always better on than the 
state-of-the-art methods on two of the metrics (NSS and F-
measure). The AUROC metric is very sensitive here to the 
centered Gaussian. 

 

 
Figure 5 Evaluation of Hyperaptor using AUROC (first row), NSS 
(second row) and F-Measure (third row) metrics compared with 4 
different saliency models and a Gaussian  
 

4. CONCLUSION 
 

In this paper, we propose a new video saliency approach 
which uses 2D histogram surfaces while computing the rarity. 
Both static and dynamic features are taken into account. Low 
and high level information are added along with a 
superpixels-based pre-segmentation. This novel approach is 
evaluated on 12 videos with both eye-tracking and manually 
segmented objects ground truth and three different 

Higher is better 

Higher is better 

Higher is better 
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comparison metrics. The videos are very different in terms of 
content and motion (including cluttered background, moving 
background, moving camera, etc...). The 12 videos dataset is 
based on an existing work which is complemented with the 
unfinished manually segmented objects maps. 
If we except the AUROC metric where Hyperaptor is 3rd, on 
NSS and F-measure, our model is way better than the 
competing approaches. The use of the superpixels in the 
proposed model lead to the fact that Hyperaptor is also very 
good for the detecting salient objects and not only in 
predicting eye gaze.  
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