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ABSTRACT

Photoplethysmography (PPG) is a non invasive measurement
of the blood flow, that can be used instead of electrocardio-
graphy to estimate heart rate (HR). Most existing techniques
used for HR monitoring in fitness with PPG focus on slowly
running alone, while those suitable for intensive physical ex-
ercise need an initialization stage in which wearers are re-
quired to stand still for several seconds. This paper present a
novel algorithm for HR estimation from PPG signal based on
motion artifact removal (MAR) and adaptive tracking (AT)
that overcomes limitations of the previous techniques. Ex-
perimental evaluations performed on datasets recorded from
several subjects during running show an average absolute er-
ror of HR estimation of 2.26 beats per minute, demonstrating
the validity of the presented technique to monitor HR using
wearable devices which use PPG signals.

Index Terms— Heart rate monitoring, photoplethysmog-
raphy (PPG), motion artifact, SVD decomposition.

1. INTRODUCTION

Photoplethysmography (PPG) is a non invasive measurement
of the blood flow at the surface of the skin, that is used instead
of electrocardiography (ECG) to estimate heart rate (HR).

In new wearable devices this signal needs to be monitored
during fitness and/or daily activities where motion is always
present. HR monitoring from wrist type PPG signal during
intensive physical exercise is a challenging problem due to the
extremely strong motion artifact (MA), caused by subjects’
hand movements, that corrupts PPG signal.

To date, several different techniques have been suggested
for the removal of MA from PPG signal. Among these, the
most common are: independent component analysis (ICA)
[1], adaptive filtering techniques [2, 3], Kalman filtering [4],
wavelet based methods [5], empirical mode decomposition
[6,7]. More recently combinations of a number of techniques
have been successful used [8,9]. The main lacks of these are
as follows. Most of them were proposed for a clinical sce-
nario, that is with subjects performing small motions. Only
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a few techniques are suitable for HR monitoring in fitness.
However, some of them focused on slowly running alone,
while techniques for intensive physical exercise need an ini-
tialization stage in which wearers are required to reduce hand
motions as much as possible for several seconds.

The algorithm presented in this paper aims to overcome
all the limitations of the previous techniques. The algorithm
consists of two key parts: motion artifact removal (MAR) and
adaptive tracking (AT).

The MAR algorithm is based on the assumption that the
artifact and heart rate signal are in two distinct subspaces. The
subspace of motion signals (SMS) is estimated by the singular
value decomposition (SVD) of the accelerometer data matrix,
while the subspace of the HR signal is estimated by removing
the closest subspace to the SMS from the SVD decomposition
of the PPG data matrix.

The AT algorithm is based on the assumption that each
of the main components extracted by the SVD show a single
dominant peak in their frequency spectrum. We determine
the frequency of these peaks and use them to define a metric
to measure distances between the SMS and potential HR esti-
mates, so that MAs can be removed. Then the sequence of HR
estimates so obtained is smoothed to prevent spurious resid-
ual artifacts from affecting the result. One strong point of the
employed adaptive smoothing algorithm is that it is able to
converge to the true HR track regardless of the starting point,
thus relieving the subject from the need of limiting their mo-
tion to initialize the PPG tracking.

2. MATHEMATICAL FRAMEWORK

A flow chart of the overall algorithm, named Closest-subspace
Algorithm for Reducing Motion Artifact (CARMA), is shown
in Fig. 1. It consists of the following main steps: i) pre-
processing (windowing, filtering and Hankel data matrix
construction) of PPG and accelerometer signals, ii) SVD
decomposition, iii) peak detection of the FFTs, iv) motion
artifact reduction, v) tracking of the heart rate. Steps i)—iii)
are used to determine the SMS, steps iv)—v) perform the AT,
as detailed next.
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Fig. 1: Flow chart of CARMA algorithm.

2.1. Subspace of motion signals

Given the accelerometer signals x,y, z the first step is to
determine the corresponding subspace (S) they belong to,
that is a basis S that generates (S). To this end let X =
[z 2B] Y = [yO . yB], Z = [z 2B)] be
the Hankel data matrices of the three signals respectively,
where (9, y® 20 ¢ RN j=1,...,L, L > N represent
the observations achieved from the three-axes accelerometer.
The complete matrix of sample signals

H=[XY Z] e RV*3L )]

can be decomposed by the SVD as
3 N
H = SART = Z Nisirl )
i=1

where S = [s1...5x], R = [r1...rx] and the eigenvalues
A; are in decreasing order A\; > Ay > ... > An. Since, in
general, it results Apy1,..., Ay < € withe ~ 0 we can write

P
H=Y \sir] (3)
i=1
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This approximation is equivalent to assume the signals are in
the subspace

(S) =span(sy...sp) , 4)

generated by the basis S = [s1...sp] € R¥*F where
s1 ...sp are the most significative components of the motion
signal. (S) represents the SMS.

2.2. PPG signal model

Let us assume the following model for the PPG signal

g=m+e , geRY (5)
where e is the heart-rate signal, m the artifact and g the
PPG signal. As m belongs to the subspace (S), then the
corresponding Hankel data matrix G = [¢(V)...g0)],
G € RY*L can be written as

G=SA+E (6)

with A = [a(l)...a(L)] € RPXL F = [e(l)...e(L)] €
RNXL'

It is worth to note that, as S can be decomposed in two
orthonormal subsets S, S|

SZ[81,...,SP,SP+1,...$N]Z[SSL] @)

with S| = [sp41,...8n], E decomposes into two compo-
nents, belonging to the two orthogonal subspaces (.5), (S )

B

EL@SQ[BL

] =SB+S5,B; )
where B, B, are the corresponding coordinates, so that G is
given by

G:SA+SB+SLBL:S(A+B)+SLBL. ©))

Assuming the component SB of E belonging to the sub-
space (S) is negligible when comparing with the artifact com-
ponent S A we have

G=SA+E~SA+S5, B, , (10)

and
E:SJ_BJ_. (11)

(10) shows that the artifact and the heart-rate signal belong to
two orthonormal subspaces S, S .
2.3. Removing the closest subspace to (S) from SVD de-

composition of G

It is well known that the SVD decomposes the given space
R¥ in orthonormal subspaces. To this end let

G=UxvT (12)
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be the SVD of G, where U = [ug ...
[v1...vr] € REXL and X € RV*E,

This is useful to derive the two components SA, E by
selecting vectors wu; belonging to the subspace (S). Indeed,
assuming u; € R belongs to the span of S, is equivalent to
require that the following equations

u; = Shy (13)

’LLN] S RNXN, V =

with unknown constants h; € RF are satisfied. However,
since such a system of equations is not invertible, we search
for the vectors u; that are the closest to the subspace (5).

To do this we proceed as follows.

First the spectral peaks of the vectors s;, u; are de-

rived. Formally we compute the vectors of frequencies
(k1(s1), ... ,kp(sp)), (Ki(u1), ... ,ky(un)), as given
by

k; = arginaxFT(sj)(k‘) , j=1,...,P, (14

ki = argmax FT(u;)(k)
k

where F'T denotes the Fourier transform. Then we define the
distance of the generic vector u; to the subspace (S) as

d; = min |k;(u;) — kj(s;)|
J

i=1,....,N, (15

i=1,...,N. (16)

Finally the vectors (u;, ... u;,) are chosen such that the
corresponding distances are below a given threshold 1J. This
mean that the subspace (U,) = span(u;, ... u,, ) is the clos-
est to the artifact subspace (S).

Let @ be the number of such chosen vectors, while we
call ¢g41,...,tn the indices of the remaining vectors (those
with distances above the threshold), ordered such thatigy; <
1Q+2 < -+ < iy so as to maintain the decreasing ordering
of the corresponding singular values.

Then consider the following decomposition with ¢ =
[Z'l . ..iQ], d = [iQ+1 . ..iN], so that Uq = [uil ...U,'Q] S

RVXQ Uy = [uig,, - uiy] € RV*N=Q) and so on. It
results

b)) 0 vr
G = U, Ug] [ 0, ] [ VZT } = U, SV +UsSaVy

a7
Assuming the vectors (u;, ...u;,) belong to the sub-
space (S) and posing

2 VT = [b<1> . ..bW} (18)
it follows that every column of the matrix
Us, V! = [Uqb“) . ..Uqb@)} (19)
belong to (S). Comparing (10) with (17) we finally have

{ SA~UR VT 0,

E~UgSaV
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2.4. Tracking

Thanks to the geometrical separation previously performed,
the spectrum of the signal so obtained clearly shows the car-
diac frequency of the heart-rate signal. In particular, the heart
rate can almost always be found as the dominant frequency of
the first column of Uy, i.e., as k}

However, although usually very good, the artifact removal
performed as stated before is not always perfect. To reduce
the heart rate estimation error a frequency tracking algorithm
is thus necessary. The tracking also tries to combine the sig-
nals from the two available PPG channels, as follows.

First a check is made to determine if, by chance (e.g., be-
cause the fundamental frequency overlaps a motion artifact),
the extracted frequency is a harmonic of the heart rate, and it
is halved or doubled according to the result being more likely
to be a plausible estimate. This is done exploiting a rough
estimate of the joint probability density function of the heart
rate versus the motion artifact frequency (MAF). Indeed, it is
easy to see from the training data that HR and MAF are pos-
itively correlated with a correlation coefficient of about 0.57.
This is not a very strong correlation but it is usually enough
to tell the fundamental and its harmonics apart, using the like-
lihood computed over a simple single Gaussian model of the
HR, MAF statistics.

Then, to select the best of the two PPG channels, the one
that is closest to the previous estimate is chosen. Let dy be
this distance and e;_ be the previous heart rate estimate. The
current estimate e; is found by tracking the frequency f; =
ki (t) of the selected peak, i.e.

1Q+1
€t :ket_l —|—(1—k‘) ft (21)

where k& € [0, 1] is a weighing factor that increases as the
distance of f; from e;_; increases. As higher £ means we
rely more on the previous estimates, while lower k£ means we
trust more the current estimate, this parameter can be adjusted
to filter out spurious estimates while simultaneously tracking
relatively rapid heart rate variations. In our experiments we
got good results with a simple piecewise linear model for k as
a function of dj,

k= kmin + (kmax - kmin) min{l, dO/doo} (22)

where kpnin = 0.1, knax = 0.9, and do = 14 BPM.

Setting a kmin > 0 makes the tracking algorithm robust
with respect to the tracking starting point, or a few missed
estimations, as a sufficiently high number of correct HR es-
timates will eventually attract the tracking algorithm to the
correct path. This is shown experimentally in Fig. 2, which
reports the tracking performed from arbitrarily chosen start-
ing points of 30 BPM, 60 BPM, 180 BPM, and 240 BPM (red
lines), together with the automatically selected starting point
(green line). As a reference, the true HR (derived from si-
multaneously recorded ECG) is also reported in black. After
a few seconds, all the estimated tracks converge to the same,
which is also very close to the true HR.
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Fig. 2: AT algorithm at work with different starting points (red

lines). Regardless of initialization, it always converges to the

same track (green line), which is very close to the ground truth

(black line).

3. EXPERIMENTAL RESULTS

To validate the effectiveness of the algorithm we tested it on
the 12-subject dataset used in [9], and on an extra track (sub-
ject 13) in which the subject did a different kind of exercise.
Figure 3 shows examples of the tracking performed. The
red and amber stars represent the frequency estimates com-
ing from the peak finders for the two PPG channels. The blue
circles the frequency estimate of the most prominent peak in
the accelerometer channels (actually, P = 10 peaks are used
in the artifact removal, but only the first is shown to avoid
cluttering the figures). The green solid line is our HR esti-
mate. As a reference, the ECG-derived true HR is the black
solid line. The tracking is generally good, and even if the al-
gorithm is sometimes driven off the correct track (because the
MAR algorithm was overly aggressive and removed a valid
HR candidate, or the MA frequency lay so close to the HR
that the SVD frequency resolution couldn’t resolve them), it
SOON recovers.

A comparison of its performance with those of [9] are re-
ported in Tab. 1, which reports the mean absolute error (MAE)
and the root mean square error (RMSE), and in more detail for
each subject in Tab. 2. Despite being much simpler and not
requiring an initialization phase, our algorithm attained com-
parable scores, often remarkably better.

4. CONCLUSIONS

A novel algorithm for HR estimation from PPG signals has
been presented. It removes motion artifacts and adaptively
tracks HR exploiting dominant frequencies of SVD decom-
position to separate the PPG in two subspaces, overcoming
many limitations of already existing techniques. Experimen-
tal evaluations performed on datasets recorded from subjects
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Table 1: Average performance on recordings 1-12 [BPM].

[ Method | MAE | RMSE |

CARMA | 2.26 3.63
TROIKA | 2.34 3.07

during running and other activities show an average absolute
error better than the current state of the art, despite the pro-
posed algorithm being much simpler.
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Table 2: Average absolute error on 12 recordings [BPM].

| Method || Subjl | Subj2 | Subj3 | Subj4 | Subj5 | Subj6 | Subj7 | Subj8 | Subj9 | Subjl0 | Subjll | SubjI2 |
CARMA 2.58 1.48 1.40 2.47 1.54 3.24 1.01 1.19 0.93 6.28 1.68 3.30
TROIKA 2.29 2.19 2.00 2.15 2.01 2.76 1.67 1.93 1.86 4.70 1.72 2.84
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Fig. 3: Experimental results from six different subjects.
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