23rd European Signal Processing Conference (EUSIPCO)

DAILY ACTIVITY RECOGNITION BASED ON DNN USING ENVIRONMENTAL SOUND
AND ACCELERATION SIGNALS

Tomoki Hayashi*, Masafumi Nishida*, Norihide Kitaokal, Kazuya Takeda*

*Nagoya Univ., Japan "The Univ. of Tokushima, Japan

ABSTRACT

We propose a new method of recognizing daily human activ-
ities based on a Deep Neural Network (DNN), using multi-
modal signals such as environmental sound and subject ac-
celeration. We conduct recognition experiments to compare
the proposed method to other methods such as a Support Vec-
tor Machine (SVM), using real-world data recorded continu-
ously over 72 hours. Our proposed method achieved a frame
accuracy rate of 85.5% and a sample accuracy rate of 91.7%
when identifying nine different types of daily activities. Fur-
thermore, the proposed method outperformed the SVM-based
method when an additional “Other” activity category was in-
cluded. Therefore, we demonstrate that DNNs are a robust
method of daily activity recognition.

Index Terms— Daily activity recognition, DNN, multi-
modal, acceleration signal, environmental sound signal

1. INTRODUCTION

An unprecedented aging of the population is occurring in
Japan. In 2014, Japan was categorized as a ‘“‘super-aging
society” with more than 21 of the population falling into the
category of elderly people over 65 years old. This trend is
projected to accelerate, and by 2030 it is estimated that more
than one third of the Japanese population will be over 65
years old. Demand for nursing and medical care will increase
dramatically, and it will become difficult for society to meet
these needs. Hence, it is necessary to develop technology
which will allow elderly people to live independently and
safely. In this study we propose a system which can monitor
and assist elderly people in their daily lives by recognizing
their current activities, using sensor signals obtained from a
smartphone.

Many researchers have investigated daily activity recogni-
tion using sensor signals. Ohishi et al. [1] and Peng et al. [2]
proposed an acoustic event detection method using environ-
mental sound signals. Kwapisz et al. [3] conducted activity
recognition experiments focusing on simple activities such as
walking, running, standing, and so on. Ohuchi et al. [4] pro-
posed a hierarchical daily activity recognition system which
used a combination of subject acceleration and environmental
sound signals. However, these studies used datasets consist-
ing of simulated activity, which may differ from actual daily
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activities. Furthermore, the types of daily activities targeted
were limited.

In this study we propose a robust daily activity recogni-
tion method based on a DNN using environmental sound and
an acceleration signal. We conduct recognition experiments
and compare the proposed method to other methods such as
a Support Vector Machine (SVM), employing a dataset built
by Nishida et al. [5]. The dataset consists of sensor signals
recorded with a small video camera and a smartphone over 72
continuous hours. In addition to previously determined and
programmed target activities, we also attempt to recognize
activities which are not targeted, because our system should
be able to recognize any kind of daily activity which occurs
at any time. For this reason we also evaluate recognition ac-
curacies when there is an additional category for “Other” ac-
tivities.

2. PROPOSED METHOD

We developed the proposed model as follow:
1. Divide each signal into time windows of equal duration.
2. Extract features from each window.

3. Concatenate the features calculated from environmental
sound and those extracted from an acceleration signal.

4. Train the classifier using the concatenated features.

In this study, we used DNN as the classifier, and compared
its performance with a SVM-based method, a frequently
used classification technique which can achieve good activity
recognition performance.

2.1. Feature extraction

We first divide the environmental sound signal and the ac-
celeration signal into synchronous windows of equal dura-
tion, and extract the features from each window. Window
size and shift size were both 1 sec. Time stamp informa-
tion from these signals was used for synchronization. We
extracted three features from each environmental sound sig-
nal window; Mel Frequency Cepstral Coefficients (MFCC)
+ Power + A + AA, Zero-Crossing Rate (ZCR) and Root
Mean Square (RMS). We obtained 41 dimensional features
for each window, and used these features as outlined in [4].
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We then extracted the following five features from each ac-
celeration signal using the X, Y, and Z axes of each window:
mean, variance, energy, entropy in the frequency domain, and
correlation coefficients. These features were chosen per [6]
and [7]. Here, the mean and variance are defined as the mean
and variance of the raw acceleration signal. Energy E rep-
resents the sum of the absolute values of FFT components
excluding the DC component, as expressed by the following
equation:
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where F; indicates the i-th FFT component of the signal of
each axis. Entropy in the frequency domain is represented as

follows:
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where p(4) indicates the probability distribution derived from

the normalized FFT component using the following equation:
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Correlation coefficient r between two axes is defined for the
series data x, y of two axis as follows:
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where C'ov(x,y) indicates covariance between two vectors
and o represents a standard deviation of vector components.

Finally, we concatenated these features extracted from the
sound signal and acceleration signals and used a total 56 di-
mensional features as classifier inputs.

2.2. Activity Classifier

In this study, we used the DNN shown in Fig.1 as our classier.
The number of layers and hidden nodes in each layer are 5
and 2,048, respectively. The number of nodes of the input
layer corresponds to the dimensions of the input features, and
the number of nodes of the output layer corresponds to the
number of target activity classes.

We trained the DNN using the following procedure. First,
we concatenated the features of 11 frames, which included
the center frame, the 5 preceding frames, and the 5 succeed-
ing frames by utilizing a key property of DNNs, which are
the ability to deal with large numbers of dimensional feature
vectors and time series data. In total, we used a 616(56 x 11)
dimensional feature vector as our DNN input. Second, we
normalized the concatenated features as the mean and the
variance of each dimension, so that they became 0 and 1, re-
spectively, using all of the training data. Third, we pre-trained
the DNN using a restricted Boltzmann machine (RBM) [8,9]
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Fig. 1. Activity classifier using DNN

to set the appropriate initial parameters of the DNN using
the normalized concatenated features. Finally, we trained the
DNN by fine-tuning with back-propagation [10] using labeled
data. In the fine-tuning phase we adopted two approaches. In
the first approach, we trained the DNN at a fixed learning rate.
After 5 epochs, we began to halve the learning rate every half
epoch. In the second approach, we used the Dropout [11]
method with a fixed learning rate.

3. EXPERIMENTS

We conducted a daily activity recognition experiment to con-
firm the performance of the proposed model, using the dataset
built by Nishida et al. [5], which recorded real-world human
activity continuously for 72 hours. This dataset includes envi-
ronmental sound signals recorded with a Go-pro video camera
attached to the subject’s shoulder and an acceleration signal
recorded with a smart-phone in the back pocket of the sub-
ject’s trousers. The Subject is a 20 year-old, male undergradu-
ate student, living in a one-room studio apartment. [i.e., NOT
a one bedroom apartment (an apartment with a kitchen/dining
area and a separate bedroom).]

3.1. Experimental conditions

A list of target activities is shown in Table 1, with the numbers
in parentheses representing the number of samples of each

Table 1. Target activity

Cleaning Sleeping

A [39] F [1257]

B Cooking G Smart-phone
[108] [198]
Meal Toilet

c [120] H [61]

D Note-PC I Watching-TV
[141] [109]

E Reading I Other
[164] [582]
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Table 2. Experimental conditions

Env1ronmentgl Sound signal 16000 Hz
sampling rate
Accelerapon signal 128 Hz
sampling rate
Window size 1.0 sec
Shift size 1.0 sec
#Sample 2779
Validation method Hold-out validation
#K of KNN 5
#Mixture of GMM 10
SVM libsvm-3.18
SVM Kernel RBF kernel
SVM Type One-Versus-One

Table 3. DNN Fine-tuning conditions

Number of layer 5
Middle later nodes 2048
. 0.006 (w/o dropout)
Learning rate 0.06 (w/ dropout)
momentum 0.0
L2 0.0 (w/o dropout)
0.00001 (w/ dropout)
20 (w/o dropout)
epoch 400 (w/ dropout)
Droprate of input layer 0.2
Droprate of middle layers 0.5

activity. Experimental conditions and DNN training condi-
tions are shown in Tables 2 and Table 3 respectively. In Ta-
ble 2, the “sample” means a data segment whose length is 60
sec. In these experiments we adopted the Hold-out validation
method, since the number of samples for each activity class is
different. For Hold-out validation we chose 10 samples ran-
domly from each class, and used these samples as test data.
The remaining data was used as training data.

3.2. Investigation of effectiveness of acceleration features

First, we built a DNN and other models (KNN, GMM, De-
cision tree, SVM) to classify nine activity classes, without an

KNN GMM Tree SVM

DNN (w/o Dropout) DNN (w/ Dropout)
Fig. 2. Classification performance with/without acc. features
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“Other” class to represent non-target activities. To confirm the
effectiveness of the acceleration features, we compared per-
formance using only acoustic features with performance us-
ing both acoustic and acceleration features. Results are shown
in Fig. 2. “Frame” indicates a frame accuracy, which is the
recognition accuracy for the frame unit. “Sample” indicates a
sample accuracy, which is the recognition accuracy obtained
using the majority of the frame recognition results in each
sample. The results for all of the models show that recogni-
tion accuracy, especially frame accuracy, improved when we
added acceleration features to the input features. Therefore,
we can confirm the effectiveness of using acceleration fea-
tures for activity classification.

Next, we focused on the difference in effectiveness be-
tween DNNs and other methods. Our results, shown in Fig.
2, revealed that the DNN outperformed other methods, espe-
cially when using a DNN with a dropout. Comparing perfor-
mance with and without a dropout, the DNN with a dropout
achieved higher frame and sample accuracies. The reason for
this dramatic improvement may be related to the variety of
signals in the same class. Since we used data recorded in
a real environment and there were many signals in the same
class, we assume the effect of over-fitting became more appar-
ent, hence, generalization methods such as dropout became
more effective. Whatever the case may be, we confirmed that
the DNN achieved better performance.

3.3. Recognition of non-target activity

Next, we added an “Other” category for non-targeted activity,
and built a DNN and other models for a ten activity classifica-
tion problem. Experimental results are shown in Fig. 3. Our
results show that the performance of other methods decreased
dramatically in both frame and sample accuracy when a non-
target activity category was added. The confusion matrix of
SVM in Table 5 shows that adding an “Other” class influences
the other classes significantly. Classification of the “Clean-
ing” activity class was most drastically affected, with more
than 3/4 of the samples misclassified into the “Other” class.
This may be caused by the encroachment of the “Other” class
into the rest of the classes affected the decisions made by the
discriminative hyper-plane in the feature domain. To confirm
this, we plotted input features in a 2-D space through dimen-
sional reduction using PCA, as shown in Fig. 4. We can see
that the “Other” class encroached into the rest of the classes.

DNN (w/ Dropout)
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KNN GMM Tree SVM

Fig. 3. Classification performance with/without “Other”

F-measure [%]
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Fig. 4. Input feature of each classes in the feature domain

On the other hand, the classification performance of the
DNN did not decrease as sharply as it did with other meth-
ods after an “Other” class was added. Comparing the con-
fusion matrices in Tables 5 and 6 confirms that the effect of
the ”Other” class was reduced when using the DNN, espe-
cially regarding the misclassification of the “Cleaning” activ-
ity samples. These results show that the DNN did not con-
struct a simple hyper-plane for discrimination, which indi-
cates that DNNs are likely more robust to outliers.

3.4. N-best result

In actual application, improvement of the recognition rate oc-
curs during re-scoring, using an N-best list. Hence, it is cru-
cial important whether or not the correct label appears in the
N-best list. The NV-best results for the DNN with dropout are
shown in Table 4. Even with the existence of an “Other” class,
our results confirm that the DNN with dropout achieved high
performance, with a recognition rate accuracy of over 90%
when N = 2.

Table 4. N-best results of DNN with dropout

w/o other w/ other
’ Frame \ Sample | Frame \ Sample
1-Best [%] | 85.5 91.7 82.7 89.0
2-Best [%] | 92.4 96.3 92.4 96.3
3-Best [%] | 95.6 97.9 96.4 97.8

4. CONCLUSION

We proposed a new method for the recognition of daily hu-
man activities using a DNN with environmental sound and
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subject acceleration signals. We conducted recognition ex-
periments and compared our method with other methods such
as an SVM using a real-world dataset recorded over 72 con-
tinuous hours. Our results showed that acceleration features
are effective for recognizing daily activities. The proposed
method demonstrated its effectiveness by achieving a frame
accuracy rate of 85.5% and a sample accuracy rate of 91.7%
when categorizing nine different types of daily activities. Fur-
thermore, our proposed method outperformed an SVM-based
classification method when using nine activity categories and
atenth “Other” (out-of-target) category, achieving a frame ac-
curacy of 82.7% and a sample accuracy of 89.0%. Regarding
future work, we will investigate differences in activity clas-
sification rates when using multiple subjects, as well as the
effect on performance when additional activities are targeted.

Table 5. Confusion matrix of activity classification by SVM
Predicted label
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Table 6. Confusion matrix of activity classification by DNN
Predicted label

AlB|c|D|E|F|lc|H]|T]|]
Al 3]olololo]o]o]o]19
I Bl1]s8]o]l3]olo]lof]o]o]s
% cloflofo3fololol1]lo]lo]es
—“Ipfloloflolow|olo]l2]o]2]o
§ E{lolojo]o|ss|6|3]0]2]1
alFlo]lolof[o]ofwo]ololo]o
=lGclolol1]l2]6|l0|8]0]0]4
HloJololo[1]1]1]8]o0]15
I{oflof2]o|5]0|1]0]78]14
JlolololoJolo]o]o]o]lio00




(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

23rd European Signal Processing Conference (EUSIPCO)

REFERENCES

Y. Ohishi, D. Mochihashi, T. Matsui, M. Nakano,
H. Kameoka, T. [zumitani, and K. Kashino, “Bayesian
semi-supervised audio event transcription based on
Markov Indian buffet process,” in Proc. [CASSP, 2013.

Ya-Ti Peng, Ching-Yung Lin, Ming-Ting Sun, and Kun-
Cheng Tsai, “Healthcare audio event classification
using hidden Markov models and hierarchical hidden
Markov models,” in Multimedia and Expo, 2009. ICME
2009. IEEE International Conference on, June 2009,
pp- 1218-1221.

Jennifer R. Kwapisz, Gary M. Weiss, and Samuel A.
Moore, “Activity recognition using cell phone ac-
celerometers,” SIGKDD Exploration Newsletter., vol.
12, no. 2, pp. 74-82, Mar. 2011.

Kazushige Ouchi and Miwako Doi, “Living activ-
ity recognition using off-the-shelf sensors on mobile
phones,” Annals of Telecommunications, vol. 67, no.
7-8, pp. 387-395, 2012.

M. Nishida, N. Kitaoka, and K. Takeda, “Development
and preliminary analysis of sensor signal database of
continuous daily living activity over the long term,” in
Proc. APSIPA, 2014.

Ling Bao and StephenS. Intille, “Activity recognition
from user-annotated acceleration data,” in Pervasive
Computing, Alois Ferscha and Friedemann Mattern,
Eds., vol. 3001 of Lecture Notes in Computer Science,
pp- 1-17. Springer Berlin Heidelberg, 2004.

Nishkam Ravi, D. Nikhil, Preetham Mysore, and
Michael L. Littman, “Activity recognition from ac-
celerometer data,” in In Proceedings of the Seventeenth

Conference on Innovative Applications of Artificial In-
telligence(IAAI). 2005, pp. 1541-1546, AAAI Press.

GeoffreyE. Hinton, “A practical guide to training re-
stricted boltzmann machines,” in Neural Networks:
Tricks of the Trade, Gregoire Montavon, GenevieveB.
Orr, and Klaus-Robert Muller, Eds., vol. 7700 of Lec-
ture Notes in Computer Science, pp. 599-619. Springer
Berlin Heidelberg, 2012.

Vinod Nair and Geoffrey E. Hinton, “Implicit mix-
tures of restricted Boltzmann machines,” in Advances in
Neural Information Processing Systems 21, D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, Eds., pp.
1145-1152. Curran Associates, Inc., 2009.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams, “Learning representations by back-
propagating errors,” in Neurocomputing: Foundations
of Research, James A. Anderson and Edward Rosen-
feld, Eds., pp. 696-699. MIT Press, Cambridge, MA,
USA, 1988.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,

2355

Ilya Sutskever, and Ruslan Salakhutdinov, “Improving
neural networks by preventing co-adaptation of feature
detectors,” CoRR, vol. abs/1207.0580, 2012.



