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ABSTRACT

Adaptive channel equalisation is a signal processing tech-

nique to mitigate inter-symbol interference (ISI) in a time

dispersive channel. To this end, the use of least mean squares

(LMS) algorithm and its variants is widespread since they

minimise the minimum mean squared error (MMSE) criteria

by online stochastic gradient algorithms and they asymp-

totically tend to the optimal Weiner solution for linearly

separable channels. The kernel least mean squares (KLMS)

algorithm and its variants are based on the MMSE based

algorithms for non-linear channels. However, as has been

pointed out in the literature, the minimum bit/symbol error

rate (MBER/MSER) criterion is a better choice for adapt-

ing an equaliser as compared to the traditional approaches

based on MMSE criterion. In this paper, we propose a novel

equaliser that is inspired from the recently proposed MSER

adaptation by Gong et al. using the kernel trick for non-linear

channel equalisation.

Index Terms— Minimum symbol-error rate criterion,

kernel trick, non-linear equalisation.

1. INTRODUCTION

The aim of any communication link design is to maximise the

number of bits that can be sent reliably over that link (which is

mathematically bounded by the Shannon capacity). There are

three ways to optimise the performance of a communication

link: a) Equalisation, b) Diversity and c) Channel-coding [1].

Equalisation, in particular, is the process of inferring the in-

verse transfer function of the channel so as to counter time

dispersion. This inference from the channel can be supervised

or unsupervised. Supervised learning assumes the knowledge

of labels of training data. Unsupervised learning does not as-

sume knowledge of labels of training data. The scope of this

paper is limited to supervised equalisation.

Equalisers are generally adapted by the well known

stochastic gradient algorithms using the least mean squares

(LMS) algorithm and its variants [2] that are based on the

minimum mean squared error (MMSE) criterion. However, as

has been pointed out seminally in [3], and reviewed in [4–7]

the minimum bit error rate (MBER)/ minimum symbol error
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rate (MSER) criterion is more suitable for channel equal-

isation as compared to MMSE approaches as it optimises

the symbol error rate directly. Recently, an extension to the

MBER paradigm was proposed in [8] based on a normalised

filtering paradigm that used soft approximations for signum

function and showed superior convergence performance as

compared to the original adaptive minimum bit error rate

(AMBER) algorithm [3].

All algorithms, reviewed above, work well when the data

is affinely separable or “equalisable” as defined in theorems

in [3]. However, when there is a non-linear channel, the data

ceases to be affinely separable. In such scenarios, the works

as in [9], which consider kernel based approaches for equal-

isation are more appropriate as the data, which is not lin-

early separable in indigenous space is mapped to kernel space

where it can be linearly separable. Later, the work in [10], in-

troduces a complex kernel for complex valued data. However,

the works in [9, 10] are kernelised version of the adaptations

of stochastic MMSE criterion. Though non-linear MBER

based approaches have been explored in [6] using radial ba-

sis functions, they need further computations like adapting

the centers and spread parameters. Also, the performance of

radial basis functions (RBF) is dependent on initialisation of

centers. Kernel based approaches do not need these computa-

tions and learn the parameters implicitly.

In this work, we propose a stochastic gradient based

MSER algorithm, and invoke the kernel trick as in [10] for

non-linear complex channel equalisation for the algorithm

given in [8]. We find better convergence results in terms of

symbol error rate in our preliminary investigations in case of

the proposed algorithm as compared to the complex kernel

least mean squares (KLMS) algorithm in [10] over non-linear

channels.

2. SYSTEM MODEL

In this section, we describe the system model considered in

the paper. From the system model depicted in Fig. 1, let sk
denote the input constellation at the kth time instant. It is

passed through a finite impulse response (FIR) filter {hi}Li=1,

where L is the tap length. The received symbol at kth time
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Fig. 1. System Model

instant , rk , is given as follows:

rk = f(

L−1
∑

i=0

hisk−i) + nk (1)

where f(.) is an arbitrary non-linear mapping, nk is complex

additive white Gaussian noise (AWGN) and D denotes the

equaliser delay. The channel consists of a linear FIR filter

h = [h0, h1...hL−1] and a non-linear mapping f(.), which

acts on the output of the convolution of input and the FIR

filter.

3. BRIEF REVIEW OF NAMBER

The normalised-AMBER (NAMBER), originally proposed in

[8], was found to be fast convergent as compared to AMBER

owing to the use of a soft approximation of a signum func-

tion and an adaptation scheme similar to normalised-LMS

(NLMS). In this section, we briefly review NAMBER for

channel equalisation. Let us introduce the terminology to

be followed in this section. While reviewing the NAMBER

(MSER based equaliser) and to denote a linearly separable

ISI channel we will use f(x) = x and an FIR equaliser ck
at kth time instant. Then rk will purely be the convolution

of input symbols with the FIR channel with AWGN added to

it. NAMBER solves the following approximate optimisation

problem ((26) from [8]):

min
c

.‖ck − ck−1‖22
s.t. sign(β[ℜ(cTk rk)−ℜ(sk−D) + 1])

+ sign(β[ℜ(cTk rk)−ℜ(sk−D)− 1]) = 0

sign(β[ℑ(cTk rk)−ℑ(sk−D) + 1])

+ sign(β[ℑ(cTk rk)−ℑ(sk−D)− 1]) = 0

(2)

where, rk is the vector of past N samples of channel output

at kth instant. Also, ℜ(.) and ℑ(.) indicate the real and imag-

inary part of the complex quantity respectively. NAMBER

plugs in the tanh function as approximation for the signum

function and further approximates its derivative by a first or-

der Taylor approximation to obtain a normalised-AMBER al-

gorithm.

The final adaptation equation is as follows:

ck = ck−1 − µIk
r∗k

rHk rk + ǫ
(3)

where µ is the step-size, H denotes hermitian transpose and

∗ denotes complex conjugation. ǫ is an arbitrarily small value

commonly used in normalised adaptive filtering [2].

Using tanh approximation for signum function, the fol-

lowing value of Ik was derived [8]:

Ik = tanh(β(ΩR + 1)) + tanh(β(ΩR − 1)) (4)

+j(tanh(β(ΩI + 1)) + tanh(β(ΩI − 1)))

where,

ΩR = ℜ(cTk rk)−ℜ(sk−D)

and

ΩI = ℑ(cTk rk)−ℑ(sk−D)

.

4. REVIEW OF COMPLEX KLMS

In this section, we review the complex KLMS algorithm. We

first review the LMS algorithm and then show how it can be

formulated in non-linear scenario using the kernel trick. The

well known LMS algorithm adapts as follows:

ck+1 = ck + µekr∗k (5)

where µ is the step size and ek is the deviation of the fil-

tered output from the desired training symbol. However, this

algorithm fails to work in non-linear conditions where the

data is not guaranteed to be affinely separable. The complex

KLMS algorithm makes the parameter ck implicit and writes

the above adaptation as:

ck+1 = µ

k
∑

i=1

eir
∗

i (6)
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assuming zero initial conditions. Invoking the kernel trick and

writing the output of equaliser as yk+1 =< ck+1, rk+1 >K

(where < ., . >K denotes inner product in kernel space [9]),

the above adaptation is given by:

yk+1 = µ

k
∑

i=1

ei < ri, rk+1 >K (7)

where K represents a kernel inner product. The most popular

choice of kernels is a Gaussian kernel given in (8) as it maps

the dataset to infinite dimensional Hilbert space and renders

the data to be affinely seperable in that space. It is given by

the following formula [10],

< ri, rk+1 >K=
1√
2πσ2

exp

(

−
∑

∀q(r
q
i − r

q∗

k+1
)

2σ2

)

(8)

σ is the spread parameter and controls the performance of the

algorithm. It can be determined by using Silverman’s rule as

in [11]. Also the superscript q denotes the qth component of

vector.

5. PROPOSED ALGORITHM

In this section, we propose a new algorithm for non-linear

channel equalisation based on MSER based adaptation. The

NAMBER algorithm, which is reviewed in Section 3 ceases

to perform well in situations where data is not guaranteed to

be linearly separable, for e.g., non-linear channels; because

it estimates only an affine parameter. The complex KLMS

algorithm, which is reviewed in Section 4 is more suitable

for non-linear datasets. However, the complex KLMS algo-

rithm is based on a MMSE criterion in a kernel Hilbert space.

Therefore, we try to formulate the problem inspired by an

MSER solution in kernel space without the need to estimate

centers and spread factors as in [6].

By applying the kernel trick in (3) the adaptation at the

kth instant would then become,

yk+1 = −µ

k
∑

i=1

Ii < ri, rk+1 >K (9)

where Ii is the corresponding error term at ith time instant

whose value has been defined in Section 3. The ‖rk‖22 is

not included in the denominator for two reasons: a) It is a

non-linearity that can be learnt by the Gaussian kernel func-

tion, which has been proven to be capable of approximating

(also known as universal approximation property) any arbi-

trary non-linearity, and b) It is computationally less cumber-

some as we are saved of kN multiplications and k divisions.

This kernelised MSER algorithm like some of the MSER

algorithms reviewed in [6] can be viewed as higher order

statistics of data and hence is more suitable for non-linear data

when the underlying pdf is non-Gaussian. Hence the MSER

criterion can be considered a better cost function as compared

to MMSE based approaches capable of handling deep fading

scenarios. However, as opposed to some of the RBF based

non-linear algorithms in [6], we do not need to estimate the

RBF centers as they are optimised implicitly by the kernel

inner product. We chose to apply the kernel trick on the al-

gorithm in [8] as it showed significantly better convergence

as compared to other MSER based equalisers reviewed in [8]

over linear channels.

6. SIMULATIONS

In this section, we present the simulation results to validate

the proposed scheme and compare the results with complex

KLMS for non-linear equalisation. To evaluate the proposed

scheme, we present four simulations. We first observe how

the symbol error rate (SER) evolves as a function of adapta-

tion iterations for QPSK and QAM modulation schemes keep-

ing by the signal to noise ratio (SNR) fixed in Fig. 2 and Fig.

3. Consequently, we vary the SNR and see how the converged

symbol error rate decays as a function of SNR in Fig. 4 and

Fig. 5.

In the first simulation, we considered a generic QPSK

constellation and passed it through a three-tap FIR channel

h = [0.341, 0.876, 0.341] ((CH=4) of [12]) for both real and

imaginary parts. The f(x) = x + 0.2x2 − 0.1x3 ((NL=3)

of [12]) was used as a non-linearity for both real and imag-

inary parts of the channels. Independently identically dis-

tributed (i.i.d.) complex Gaussian noise at 25dB SNR was

added. The convergence plots are shown in Fig. 2. The pro-

posed algorithm converges to a lower SER floor as compared

to complex KLMS.

For the second simulation, we considered a 16-QAM con-

stellation and mapped it to a new constellation by the tech-

nique proposed in [13]. It was convolved by the FIR filter

h = [0.26, 0.93, 0.26] ((CH=2) of [12]) for both real and

imaginary parts. The non-linearity was as same as consid-

ered in the first simulation. The convergence plots are shown

in Fig. 3. Convergence to a lower error rate metric is seen as

compared to complex KLMS algorithm.

In the third simulation, we compare the SER vs SNR per-

formance of the complex KLMS and the proposed algorithms

for QPSK in the simulation settings described above in the

first simulation. It is observed that in Fig. 4, the proposed al-

gorithm outperforms complex KLMS by half a decade. This

curve is obtained by averaging over 200 Monte Carlo sim-

ulations. The same channel and non-linearity as in the first

simulation are used. SER was monitored (for plotting it vs

SNR) after 500 iterations of adaptation of both algorithms.

In the fourth simulation, in Fig. 5 we compare the SER

vs SNR performance of the complex KLMS and the proposed

algorithm for 16-QAM in the simulation settings discussed

above for 16-QAM in the second simulation. It is observed

that the proposed algorithm outperforms complex KLMS by

23rd European Signal Processing Conference (EUSIPCO)

1463



Fig. 2. Error Rate Convergence Comparison for QPSK. h =
[0.341, 0.876, 0.341], f(x) = x+ 0.2x2 − 0.1x3,µ = 1.

more than half a decade. SER was monitored (for plotting

it vs SNR) after 1000 iterations of adaptation of both algo-

rithms. The same channel and non-linearity as used in Fig. 3

was used in this simulation.

In Fig. 6 the proposed approach is compared with the

other algorithms given in [10] like normalised complex

KLMS-1 (NCKLMS1) and normalised complex KLMS-

2 (NCKLMS2). Faster convergence is observed in case

of the proposed algorithm as compared to NCKLMS1 and

NCKLMS2 in the same simulation conditions as described

as a “hard non-linear channel equalisation” environment

in [10] with the same step-size µ and spread factor σ.

The channel h = [−0.9 + 0.8i, 0.6 − 0.7i] and f(x) =
x+ (0.2 + 0.25i)x2 + (0.12 + 0.09i)x3 was considered.

Lastly, in Fig. 7, the proposed approach is compared

with algorithms in [10] like complex KLMS, NCKLMS1

and NCKLMS2 by varying the SNR and plotting the SER

after setting the number of iterations to 500 when all algo-

rithms have converged. It is observed from Fig. 7 that at low

SNR, the SER performance of complex KLMS, NCKLMS1,

NCKLMS2 and the proposed algorithm are equivalent. A

gain of 4dB is observed as compared to NCKLMS1 and

NCKLMS2 at an SER of 4 × 10−2. However, as the SNR

increases, the SER of the proposed algorithm is less than the

error rate of complex KLMS, NCKLMS1 and NCKLMS2.

Thus we observe that at high SNR the proposed algorithm is a

more suitable equalisation algorithm as compared to complex

KLMS, NCKLMS1 and NCKLMS2. From Fig. 6 and Fig.

7, we can conclude that the proposed approach has the same

computational complexity as compared to complex KLMS

and has a better SER performance than more computationally

complex algorithms like NCKLMS1 and NCKLMS2.

Please note that the step-sizes for NCKLMS1 and

NCKLMS2 have been chosen according to [10], in which the

step-size parameter have been ”tuned for best performance”.

Fig. 3. Error Rate Convergence Comparison for QAM. h =
[0.26, 0.93, 0.26], f(x) = x+ 0.2x2 − 0.1x3,µ = 1.

Fig. 4. SER vs SNR Comparison for QPSK. h =
[0.341, 0.876, 0.341], f(x) = x+ 0.2x2 − 0.1x3,µ = 1.

Fig. 5. SER vs SNR Comparison for QAM. h =
[0.26, 0.93, 0.26], f(x) = x+ 0.2x2 − 0.1x3,µ = 1.
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Fig. 6. SER vs iterations for comparison with complex KLMS

(µ = 0.1), NCKLMS1 (µ = 0.5) and NCKLMS2 (µ = 0.25)

for QPSK for channel in [10], SNR=25dB.

Fig. 7. SER vs SNR comparison with complex KLMS (µ =
0.1), NCKLMS1 (µ = 0.5) and NCKLMS2 (µ = 0.25) for

QPSK for channel in [10].

7. CONCLUSION

A new MSER based approach for non-linear channel equali-

sation has been proposed and compared with complex KLMS,

NCKLMS1 and NCKLMS2. Better convergence is observed

in case of the proposed algorithm as compared to complex

KLMS. Also, we get lower SER as a function of SNR in case

of the proposed scheme as compared to complex KLMS based

approaches. Hence, it is a better channel equalisation algo-

rithm for QPSK and QAM modulation techniques.
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