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ABSTRACT

Nonnegative matrix factorization (NMF) has been increas-

ingly investigated for data analysis and dimension-reduction.

To tackle large-scale data, several online techniques for NMF

have been introduced recently. So far, the online NMF has

been limited to the linear model. This paper develops an on-

line version of the nonlinear kernel-based NMF, where the de-

composition is performed in the feature space. Taking the ad-

vantage of the stochastic gradient descent and the mini-batch

scheme, the proposed method has a fixed, tractable complex-

ity independent of the increasing samples number. We derive

the multiplicative update rules of the general form, and de-

scribe in detail the case of the Gaussian kernel. The effec-

tiveness of the proposed method is validated on unmixing hy-

perspectral images, compared with the state-of-the-art online

NMF methods.

Index Terms— Nonnegative matrix factorization, online

learning, kernel machines, hyperspectral unmixing

1. INTRODUCTION

Nonnegative matrix factorization (NMF) consists in approxi-

mating a given nonnegative matrix by the product of two low-

rank ones [1], the left low-rank matrix is often called basis

matrix while the right one is the encoding one. Due to the

ability to extract parts-based features for the nonnegative in-

put data, the NMF provides a framework suitable to a host of

applications. In particular, applied to the hyperspectral un-

mixing problem, the NMF jointly estimates the “pure” spec-

tra, namely endmembers (given in the basis matrix) and their

fractional abundances at each pixel (given in the encoding ma-

trix).

Most studies concentrate on the linear NMF model, where

the objective function is defined by the Frobenius norm in an

Euclidean space, called input space. In this case, one seeks

to minimize the difference between the input matrix and the

product of the estimated ones. This linear model is often

improved by auxiliary regularization terms. Recently, a few

kernel-based NMF have been proposed to extent the linear

NMF model to the nonlinear scope. By exploiting the frame-

work offered by the kernel machines, these methods map the
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data with some nonlinear function from the input space to

a feature space, and perform the existing linear techniques

on the transformed data. Unfortunately, the curse of the pre-

image [2], inherent from kernel machines, remains the bot-

tleneck in most kernel-based NMF, e.g., [3, 4]. That is, the

obtained bases lie in the feature space, and thus one cannot

represent both low-rank matrices in the input space. Recently

proposed in [5], the so-called KNMF overcomes this diffi-

cultly by minimizing an objective function, which is defined

in the feature space, directly in the input space. It is this for-

mulation that is investigated throughout this paper.

To handle large-scale and streaming dynamic data, a cou-

ple of NMF methods have been extended from batch mode

to online mode. For instance, online methods in [6–9] all

deal with the conventional linear NMF model. The projec-

tive online NMF (PONMF) [10,11] maintains the virtue of its

batch counterpart in guaranteeing a sparse, parts-based rep-

resentation. In [12], the authors consider the online version

of the NMF with Itakura-Saito divergence. Online NMF with

volume constraint is discussed in [13]. Roughly, due to the

continuously increasing computational complexity, the naive

idea of conducting sequentially batch NMF (or its variants)

is far from efficient in online setting. To alleviate this com-

putational overhead, the incremental online NMF (IONMF)

in [6] introduced first the fixity of encoding of the processed

samples. Since, this assumption was widely adopted in on-

line NMF algorithms, namely [7, 8, 13], to name a few. On

the other hand, some online NMF variants, e.g. [7, 8, 10],

follow the spirit of the stochastic gradient descent (SGD), a

prime complexity-reduction strategy for online learning [14].

Instead of considering all the available samples so far, SGD

style methods import merely a single or a small batch of sam-

ples at each iteration, thereby reducing the complexity. Sim-

ilarly, to prohibit processing the whole data, the method pre-

sented in [9] factorizes the matrix composed by the previous

basis matrix and novel sample instead. To the best of our

knowledge, current literatures of online NMF are limited to

a linear model, whereas no online method exists for nonlin-

ear kernel-based NMF. By taking advantage of the aforemen-

tioned stochastic gradient and mini-batch modes, this paper

extents the batch KNMF to an online mode by keeping a

tractable computational complexity. Moreover, we provide

multiplicative update rules of the general form, and describe

in detail the case of the Gaussian kernel.
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2. NMF AND KNMF

This section briefly reviews the NMF, with its conventional

linear model, and the recent kernel-based variant (KNMF).

Given a nonnegative data matrix X = [x1 x2 · · · xT ] ∈
ℜL×T , wherein xt ∈ ℜL represents the t-th sample data, lin-

ear NMF aims to factorize it into two low-rank nonnegative

matrices. Namely X ≈ EA, under the nonnegativity con-

straint on all the entries of E ∈ ℜL×N and A ∈ ℜN×T . Let

E = [e1 e2 · · · eN ]. An equivalent vector-wise model is

given by xt ≈
∑N

n=1 ant en, for t = 1, . . . , T . The latter

model can be interpreted as to represent each sample data xt

as a linear combination of vectors e1, e2, · · · , eN , called ba-

sis vectors with scalars ant being the entries of the encoding

matrix A. Denote X as the input space spanned by all the

vectors xt, as well as the vectors en. The optimization prob-

lem of NMF consists in minimizing the following objective

function in X

J(E,A) =
1

2

T∑

t=1

‖xt −

N∑

n=1

ant en‖
2,

with the nonnegative constraints on the matrices E and A.

In [5], a kernel-based NMF (KNMF) is proposed by con-

sidering the following matrix factorization model

X
Φ ≈ E

Φ
A,

where X
Φ = [Φ(x1) Φ(x2) · · · Φ(xT )] and E

Φ =
[Φ(e1) Φ(e2) · · · Φ(eN )], or equivalently in its vector-wise

form,

Φ(xt) ≈

N∑

n=1

ant Φ(en), (1)

for all t = 1, . . . , T . Here, Φ(·) is a nonlinear function map-

ping the columns of the matrix X , as well as the columns of

the matrix E, from the input space X to some feature space

H. Its associated norm is denoted ‖ · ‖H, and the corre-

sponding inner product in the feature space is of the form

〈Φ(xt),Φ(xt′)〉H, which can be evaluated using the so-called

kernel function κ(xt,xt′) in kernel machines. Considering

the vector-wise form model (1), the objective function is writ-

ten as

J(E,A) =
1

2

T∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

ant Φ(en)
∥∥∥
2

H
, (2)

where the nonnegativity constraint is imposed on all the en-

tries of en and A.

As in the conventional NMF and its variants, although

the estimation of both unknown matrices jointly is a noncon-

vex problem, its subproblem with one matrix fixed is con-

vex. Well-known NMF algorithms, including gradient de-

scent method and multiplicative update rules, basically alter-

nate the optimization over two unknown matrices by keeping

the other one fixed [1].

3. ONLINE KNMF

We extent the aforementioned KNMF from batch to an online

version. In the online setting, the samples arrive successively;

the method is expected to produce a sequence of factoriza-

tions based on all the samples received so far. An intuitive

idea is to iteratively conduct the batch KNMF. Unfortunately,

as the samples number continuously grows, this method suf-

fers an increasing, untractable computational complexity. By

investigating the stochastic gradient, we propose an online

KNMF (KONMF) with fixed computational complexity.

3.1. Problem formulation

From (2), the objective function corresponding to the first k

samples is rewritten as

Jk(Ẽ, Ã) =
1

2

k∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

ãnt Φ(ẽn)
∥∥∥
2

H
,

where Ẽ and Ã denote respectively the basis matrix and the

encoding matrix for current k samples. We adopt the fol-

lowing assumption, initially proposed in [6] and employed in

most online NMF methods, e.g., [7,8,15]: from k to k+1, the

encoding vectors for the first k samples remain unchanged,

i.e., at = ãt, for t = 1, . . . , k.

As the new sample xk+1 is available, one needs to esti-

mate the new basis matrix E, by updating Ẽ, and the novel

sample’s encoding vector ak+1, to be appended to Ã. The

above objective function is modified to

Jk+1(E,A) =
1

2

k+1∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

ant Φ(en)
∥∥∥
2

H

=
1

2

k∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

ãnt Φ(en)
∥∥∥
2

H

+
1

2

∥∥∥Φ(xk+1)−

N∑

n=1

an(k+1) Φ(en)
∥∥∥
2

H
.

It is noteworthy that the above objective function is expressed

as a sum of sub-loss functions over data samples. By ex-

panding this expression and removing the constant term
1
2

∑k+1
t=1 κ(xt,xt), the optimization problem becomes

min
ak+1,E

k+1∑

t=1

l(xt,at,E), (3)

where l(xt,at,E), the sub-loss function over sample xt,

takes the form

1

2

N∑

n=1

N∑

m=1

antamtκ(en, em)−

N∑

n=1

antκ(en,xt).

In the following, we adopt a simple alternating technique

over the unknown basis matrix E and encoding vector ak+1

to minimize the objective function (3).
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3.2. Basis matrix update

Keep always in mind that at = ãt holds for t = 1, . . . , k.

The gradient of (3) with respect to the vector en is:

∇en
Jk+1 =

k+1∑

t=1

∇en
l(xt,at,E), (4)

where

∇en
l(xt,at,E) = ant

(

N
∑

m=1

amt ∇en
κ(en,em)−∇en

κ(en,xt)
)

.

This expression is explicit, since ∇en
κ(en, ·), which is the

gradient of the kernel with respect to its argument en, can be

determined for most valid kernels. We list in Table 1 the cases

with some commonly-used kernels.

A batch gradient descent update rule takes the form

en = en − ηn

k+1∑

t=1

∇en
l(xt,at,E), (5)

for n = 1, . . . , N , where the step-size parameter ηn may de-

pend on n. Unfortunately, this rule cannot be considered in

online learning, since it deals with all the k+1 received sam-

ples up to each iteration and has a computational cost propor-

tional to the number of samples.

A stochastic gradient descent (SGD) update alleviates this

computational burden, by approximating the above gradient

based on a single, randomly chosen, xt at each iteration, and

is of the form

en = en − ηn∇en
l(xt,at,E), (6)

for n = 1, 2, ..., N . Despite a drastically simplified proce-

dure, the SGD asymptotically converges much slower than its

batch mode counterpart [14]. A compromise between these

two is the mini-batch mode, which aggregates the gradients

corresponding to a randomly picked set of samples. For no-

tational simplicity, denote I as the sample set therein contain

the randomly picked samples employed for updating at each

iteration. The mini-batch mode takes the following form

en = en − ηn
∑

xt∈I

∇en
l(xt,at,E), (7)

for n = 1, 2, ..., N , where the mini-batch size, pre-fixed, is

denoted in the following by p with p=card(I).
In the above gradient descent update rules from (5) to

(7), the step-size parameters ηn should be appropriately set.

Moreover, a rectification function a = max(a, 0) should fol-

low after each update in order to guarantee the nonnegativity.

To overcome these difficulties, we present below the multi-

plicative update rules, which are originated by Lee and Se-

ung [1] and have been the baseline for most existing NMF

variants. Compared with additive gradient descent update

Table 1: Commonly-used kernels and their gradients with re-

spect to en.

Kernel κ(en, z) ∇en
κ(en, z)

Linear z
⊤
en z

Polynomial (z⊤
en + c)d d (z⊤

en + c)(d−1)
z

Gaussian exp( −1

2σ2 ‖en − z‖2) − 1
σ2 κ(en, z)(en − z)

Sigmoid tanh(γz⊤
en + c) γsech2(γz⊤

en + c)z

rules, the resulting methods lead to nonnegative factorization

with neither the projection to the nonnegative constraint set,

nor the pain of choosing the step-size parameter. To this end,

we split the gradient corresponding to some sample xt as the

subtraction of two nonnegative terms, i.e.,

∇en
l(xt,at,E) = ∇en

l+(xt,at,E)−∇en
l−(xt,at,E).

(8)

Setting the step-size parameter as

ηn =
en∑

xt∈I ∇en
l+(xt,at,E)

yields the following multiplicative update rule of the general

form

en = en ⊗

∑
xt∈I ∇en

l−(xt,at,E)∑
xt∈I ∇en

l+(xt,at,E)
, (9)

where the multiplication ⊗ and the division are component-

wise. Analogous to the aforementioned additive cases, three

multiplicative update rules can be distinguished depending on

the number p of samples investigated at each iteration:

• If p = k+1, all the samples are proceed and (9) is reduced

to the multiplicative update rule for batch KNMF;

• If p = 1, the multiplicative update rule (9) corresponds to

the stochastic gradient case (6);

• If 1 < p < k + 1, then (9) has the mini-batch gradient

case (7) as its additive counterpart, with the mini-batch

size equals to p.

The multiplicative update rules with a given kernel (be-

longing to but not restricted to Table 1) can be derived,

by appropriately replacing the expressions κ(en, z) and

∇en
κ(en, z) in (4), and splitting the gradient as in (8).

It is noteworthy that the trivial case with the linear ker-

nel corresponds to the linear NMF in batch mode, and to

the IONMF [6] in online mode. Without losing gener-

ality, we detail below the derivation of the multiplicative

update rules for the Gaussian kernel. In this case, the ma-

trix factorization is performed in the feature space induced

by the Gaussian kernel. The Gaussian kernel is defined

by κ(en, z) = exp( −1
2σ2 ‖en − z‖2), where σ is the tun-

able bandwidth parameter. Its gradient with respect to en

is ∇en
κ(en, z) = − 1

σ2 κ(en, z)(en − z), for any z ∈ X .

Splitting the gradient of the loss function ∇en
l(xt,at,E), as
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given in (8), yields the following two nonnegative terms:

{
∇en

l+ = ant

σ2 (κ(en,xt)en +
∑N

m=1 amtκ(en, em)em);

∇en
l− = ant

σ2 (κ(en,xt)xt +
∑N

m=1 amtκ(en, em)en).

Setting the step-size parameter as

ηn =
σ2

en

∑

xt∈I

ant

(
κ(en,xt)en +

N∑

m=1

amtκ(en, em)em

)

leads to the multiplicative update rule for en

en = en ⊗

∑

xt∈I

ant

(

xt κ(en,xt) +
N
∑

m=1

amt en κ(en, em)
)

∑

xt∈I

ant

(

en κ(en,xt) +

N
∑

m=1

amt em κ(en,em)
)

,

(10)

where the multiplication ⊗ and the division are component-

wise. For the encoding vector update, the multiplicative up-

dating rule remains unchanged.

3.3. Encoding vector update

To estimate the encoding vector ak+1 for the newly available

xk+1, we determine the partial derivative of Jk+1 with re-

spect to an(k+1), namely

∇an(k+1)
Jk+1 = −κ(en,xk+1) +

N∑

m=1

am(k+1) κ(en, em),

for n = 1, 2, ..., N . Applying the gradient descent scheme, a

simple additive update rule is constructed as

an(k+1) = an(k+1) − ηn ∇an(k+1)
Jk+1, (11)

for n = 1, 2, ..., N , where the step-size parameters ηn can be

set differently depending on n. Additionally, a rectification

function ant = max(ant, 0) is necessary after each iteration,

in order to guarantee the nonnegativity of the entries in ak+1.

Replacing the step-size parameters ηn in (11) by

ηn =
1

∑N

m=1 am(k+1) κ(en, em)
,

the multiplicative update rule for an(k+1) can be expressed as

an(k+1) = an(k+1) ×
κ(en,xk+1)∑N

m=1 am(k+1) κ(en, em)
, (12)

for n = 1, 2, ..., N .

4. EXPERIMENTAL RESULTS

This section studies the performance of the proposed method

on unmixing two well-known hyperspectral images. We study

two sub-images with 50 × 50 pixels, taken respectively from

the well-known Moffett and Urban image. According to the

literature [16, 17], L = 186 clean bands are of interest for

Moffett, and L = 162 for Urban, while the endmember num-

ber is N = 3 for the former, and N = 4 for the latter.

To provide a comprehensive comparison, we consider

five state-of-the-art online NMF algorithms: online NMF

using Hessian matrix (HONMF) [7], incremental online

NMF (IONMF) [6], online NMF based on full-rank de-

composition theorem (ONMF) [9], projective online NMF

(PONMF) [10] and online NMF with robust stochastic ap-

proximation (RSA) [8]. The unmixing performance is evalu-

ated with two metrics described in detail in [16]: the recon-

struction error in the input space (RE), defined by

RE =

√√√√ 1

TL

T∑

t=1

‖xt −

N∑

n=1

anten‖2,

and the reconstruction error in the feature space (REΦ), which

is defined by

REΦ =

√√√√ 1

TL

T∑

t=1

∥∥∥Φ(xt)−

N∑

n=1

antΦ(en)
∥∥∥
2

H
.

The experiments are conducted using the Gaussian kernel. By

conducting a preliminary analysis with the batch KNMF on

a small-size dataset, we choose the bandwidth in kernel as

σ = 3.3 for Moffett and σ = 3.0 for Urban. Regarding the

parameter-setting, the mini-batch size is empirically chosen

as in [8], with p = min{⌈ k
10⌉, 30}. To ensure a fair compar-

ison, the iteration number is equally set to be I = 100 in all

the algorithms.

As shown in Figure 1 and Figure 2, the proposed KONMF

with the Gaussian kernel outperforms ONMF in terms of the

reconstruction error in the input space, and surpasses all the

state-of-the-art methods in terms of the reconstruction error

in the feature space.

5. CONCLUSION

This paper presented a novel online nonnegative matrix fac-

torization based on kernel machines. Exploiting SGD and

mini-batch strategies, we derived the general form of multi-

plicative update rules that maintain a tractable computational

complexity. The effectiveness of the method was demon-

strated for unmixing hyperspectral images. To clarify the be-

havior of the proposed algorithm, future works include exper-

iments on simulated data, step-size choice in additive update

rules and speedup strategies.
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Fig. 1: Evolution of the reconstruction errors in the input and

feature spaces on the Moffett image.
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