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ABSTRACT
Hyperspectral unmixing aims at determining the reference
spectral signatures composing a hyperspectral image, their
abundance fractions and their number. In practice, the spec-
tral variability of the identified signatures induces significant
abundance estimation errors. To address this issue, this paper
introduces a new linear mixing model explicitly accounting
for this phenomenon. In this setting, the extracted endmem-
bers are interpreted as possibly corrupted versions of the true
endmembers. The parameters of this model can be estimated
using an optimization algorithm based on the alternating
direction method of multipliers. The performance of the pro-
posed unmixing method is evaluated on synthetic and real
data.

Index Terms— Hyperspectral imagery, linear unmixing,
endmember variability, Alternating Direction Method of Mul-
tipliers (ADMM).

1. INTRODUCTION

Hyperspectral unmixing consists of identifying the spectral
signatures from which the data are derived – referred to as
endmembers – their abundances and their number according
to a predefined mixing model. Assuming no microscopic in-
teraction between the materials of the imaged scene, a linear
mixing model (LMM) is known to be adapted to describe the
data structure [1]. However, the spectral signatures contained
in a reference pixel can vary spectrally from a pixel to another
due to the varying acquisition conditions. This can result in
significant estimation errors being propagated throughout the
unmixing process. Various models either derived from a sta-
tistical or a deterministic point of view have been designed to
address this issue [2].

Since the identified signatures can be considered as vari-
able instances of reference endmembers, we introduce an
extended version of the classical LMM to model the spectral
variability. In [3], the variability is assumed to only result
from scaling factors. Conversely, in this paper, inspired by a
model designed in [4], each endmember is represented by a
“pure” spectral signature corrupted by an additive perturba-
tion accounting for spectral variability. The perturbation is
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allowed to vary from a pixel to another to represent spatial-
spectral variability within the image. To the best of our
knowledge, it is the first time endmember variability has been
explicitly modeled as an additive perturbation. Finally, the
results obtained with the ADMM in hyperspectral imagery
[5] and in image deblurring [6, 7] have motivated the use of
a similar framework for spectral unmixing using a perturbed
LMM (PLMM).

The paper is organized as follows. The proposed PLMM
is introduced in Section 2. Section 3 describes an ADMM-
based algorithm to estimate the parameters of this model. Ex-
perimental results obtained on synthetic and real data are re-
ported in Section 4 and 5 respectively. Section 6 finally con-
cludes this work.

2. PROBLEM STATEMENT

2.1. Perturbed linear mixing model (PLMM)

Each pixel yn of a hyperspectral image is represented by a
linear combination of K endmembers – denoted by mk – af-
fected by a spatially varying perturbation vector dmn,k ac-
counting for endmember variability. The resulting PLMM
can be written

yn =

K∑
k=1

akn

(
mk + dmn,k

)
+ bn for n = 1, . . . , N (1)

where L is the number of spectral bands, N is the number of
pixels, yn denotes the nth image pixel, mk is the kth end-
member, akn is the proportion of the kth endmember in the
nth pixel, and dmn,k denotes the perturbation of the kth end-
member in the nth pixel. The term bn represents the noise
resulting from the data acquisition and the modeling errors.
In matrix form, the PLMM (1) can be written as follows

Y = MA +

[
dM1a1 . . . dMNaN

]
︸ ︷︷ ︸

∆

+B (2)

where Y = [y1, . . . ,yN ] is an L × N matrix containing the
image pixels, M is an L×K matrix containing the endmem-
bers mk, A is a K × N matrix composed of the abundance
vectors an, dMn is an L × K matrix whose columns are
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the perturbation vectors dmn,k associated with the nth pixel,
and B is an L×N matrix accounting for the noise. The non-
negativity and sum-to-one constraints usually considered to
reflect physical considerations are

A � OK,N , AT1K = 1N

M � OL,K , M + dMn � OL,K , ∀n = 1, . . . , N.
(3)

where � denotes term-wise inequality. When compared to
models found in the literature to mitigate the variability im-
pact [2], the model (1) presents the advantage to explicitly
address the variability phenomenon. Besides, the variability
is not assumed to only result from scaling factors as in [3].

2.2. Problem formulation

The PLMM (1) and constraints (3) can be combined to form
a constrained optimization problem. We propose to define
the data fitting term as the Frobenius distance between the
observations and the reconstructed data. Since the problem is
ill-posed, we introduce penalization functions Φ,Ψ and Υ to
reflect the a priori knowledge on M,A and dM respectively.
As a result, the optimization problem is expressed as

(M∗,dM∗,A∗) ∈ arg min
M,dM,A

{
J (M,dM,A) s.t. (3)

}
(4)

with

J (M,dM,A) =
1

2
‖Y −MA−∆‖2F + αΦ(A)+

βΨ(M) + γΥ(dM)
(5)

where the penalization parameters α, β, γ control the trade-
off between the data fitting term and the penalties Φ(A),
Ψ(M) and Υ(dM). In addition, we assume that the penal-
ization functions are separable, leading to

Φ(A) =

N∑
n=1

φ(an), Ψ(M) =

L∑
`=1

ψ(m̃`),

Υ(dM) =

N∑
n=1

υ(dMn)

(6)

where φ, ψ and υ are non-negative differentiable convex func-
tions, and m̃` denotes the `th row of M. This assumption is
used to decompose (4) into a collection of sub-problems de-
scribed in Section 3. All these penalizations are described in
the next paragraphs.

2.2.1. Abundance penalization

The abundance penalization Φ has been chosen to promote
spatially smooth abundances as in [8]. More precisely, the
abundance spatial smoothness penalization is written in ma-
trix form as

Φ(A) =
1

2
‖AH‖2F (7)

where H ∈ RN×4N is a matrix computing the differences
between the abundances of a given pixel and those of its 4
nearest neighbors [8]. The only terms depending on the nth
abundance vector an are

φ(an) =
1

2

( 3∑
k=0

h2n,n+kN

)
︸ ︷︷ ︸

cAn

‖an‖22

+

( N∑
i=1
i 6=n

3∑
k=0

hn,n+kNhi,n+kNaTi

)
︸ ︷︷ ︸

cT
n

an.

(8)

2.2.2. Endmember penalization

As for Ψ, classical penalizations found in the literature con-
sist of constraining the size of the simplex whose vertices are
the endmember signatures. The mutual distance between each
endmember introduced in [9] approximates the volume occu-
pied by the (K − 1)-simplex and is expressed as

Ψ(M) =
1

2

∑
i 6=j

‖mi −mj‖22 =
1

2

K∑
k=1

‖MGk‖2F (9)

where
Gk = −IK + ek1

T
K (10)

for k = 1, . . . ,K and ek denotes the kth canonical basis vec-
tor of RK . Hence

ψ(m̃`) =
1

2

K∑
k=1

‖m̃`Gk‖22 . (11)

2.2.3. Variability penalization

The function Υ has been designed to limit the norm of the
spectral variability in order to capture a reasonable endmem-
ber variability level. In this paper, we propose to consider

υ (dMn) =
1

2
‖dMn‖2F . (12)

3. AN ADMM-BASED ALGORITHM

Since the problem (4) is non-convex, the cost function J has
been successively minimized with respect to each variable
A,M and dM until a stopping criterion is satisfied [6]. The
assumptions made on Φ,Ψ,Υ in Section 2 allow the global
optimization problem to be further decomposed into a collec-
tion of convex sub-problems exclusively involving differen-
tiable functions. These sub-problems are finally solved using
ADMM steps. The resulting algorithmic scheme is summa-
rized in Algo 1. Some considerations about the convergence
of the proposed algorithm are provided in an extended version
of this paper [10].
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Algorithm 1: PLMM-unmixing: global algorithm.

Data: Y,A(0),M(0),dM(0)

begin
k ← 1;
while stopping criterion not satisfied do

(a) A(k) ← arg min
A
J
(
M(k−1),dM(k−1),A

)
;

(b) M(k) ← arg min
M

J
(
M,dM(k−1),A(k)

)
;

(c) dM(k) ← arg min
M

J
(
M(k),dM,A(k)

)
;

k ← k + 1;

A← A(k);
M←M(k);
dM← dM(k);

Result: A,M,dM

3.1. Optimization with respect to A

With the assumptions made in paragraph 2.2, optimizing J
with respect to A under the constraints (3) is equivalent to
solving

a∗n = arg min
an

{
1
2 ‖yn − (M + dMn)an‖22 + αφ(an)

s.t. an � 0K , aTn1K = 1

}
.

(13)
After introducing the splitting variables w

(A)
n ∈ RK for

n = 1, . . . , N such that(
IK
1TK

)
︸ ︷︷ ︸

Q

an +

(
−IK
0TK

)
︸ ︷︷ ︸

R

wn =

(
0K
1

)
︸ ︷︷ ︸

s

(14)

the resulting scaled augmented Lagrangian is expressed as

L
µ
(A)
n

(
an,w

(A)
n ,λ(A)

n

)
=

1

2
‖yn − (M + dMn)an‖22

+
µ
(A)
n

2

∥∥∥Qan + Rw(A)
n − s + λ(A)

n

∥∥∥2
2

+ αφ(an) + I+K,1
(
w(A)
n

)
(15)

where µ(A)
n > 0 and I+K,1 is the indicator function on (R+)

K .
Thus, for n = 1, . . . , N

a∗n =
[
(M + dMn)T (M + dMn) + µ(A)

n QTQ + αcAnIK

]−1
[
(M + dMn)Tyn − αcn + µ(A)

n QT
(
s−Rw(A)

n − λ(A)
n

)]
(16)

and
w(A)
n

∗
= max

(
an + λ

(A)
n,1:K ,0K

)
(17)

where λ
(A)
n,1:K is the vector composed of the K first elements

of λ(A)
n and the max should be understood as a term-wise

operator. In the absence of any penalization, the solution is
obtained by making α = 0 in the previous equations.

3.2. Optimization with respect to M

Similarly, optimizing J with respect to M under the con-
straints (3) is equivalent to solving

m̃∗` = arg min
m̃`


1
2

∥∥∥ỹ` − m̃`A− δ̃`

∥∥∥2
2

+ βψ(m̃`)

s.t. for n = 1, . . . , N

m̃` � 0TK , m̃` + d̃mn,` � 0TK


(18)

where ỹ`, δ̃` and d̃mn,` denote the `th row of Y, ∆ and
dMn respectively. Introducing the splitting variables W

(M)
`

in R(N+1)×K for ` = 1, . . . , L such that(
1

1N

)
︸ ︷︷ ︸

e

m̃` −W
(M)
` = −

[
0K , d̃m

T

1,`, . . . , d̃m
T

N,`

]T
︸ ︷︷ ︸

F`

(19)

the associated scaled augmented Lagrangian can be written

L
µ
(M)
`

(
m̃`,W

(M)
` ,Λ

(M)
`

)
=

1

2

∥∥∥ỹl − m̃`A− δ̃`

∥∥∥2
2

+
µ
(M)
`

2

∥∥∥em̃` −W
(M)
` + F` + Λ

(M)
`

∥∥∥2
F

+ βψ(m̃`) + I+N+1,K

(
W

(M)
`

) (20)

with µ
(M)
` > 0 and I+N+1,K the indicator function on

(R+)
N+1×K . Thus

m̃∗` =

[(
ỹ` − δ̃`

)
AT + µ

(M)
` eT

(
W

(M)
` − F` −Λ

(M)
`

)]
[
AAT + β

K∑
k=1

GkG
T
k + µ

(M)
`

(
eTe

)
IK

]−1
(21)

and
W

(M)∗
` = max

(
em̃` + F` + Λ

(M)
` ,O(N+1),K

)
. (22)

In the absence of any endmember penalization, the solution is
obtained by making β = 0 in the previous equation.

3.3. Optimization with respect to dM

Finally, optimizing J with respect to dM under the con-
straint (3) is equivalent to solving

dM∗
n = arg min

dMn


1
2 ‖yn − (M + dMn)an‖22

+γυ(dMn)

s.t. M + dMn � OL,K

 (23)
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for n = 1, . . . , N . Introducing the splitting variables
W

(dM)
n = M + dMn, the resulting scaled augmented

Lagrangian is given by

L
µ
(dM)
n

(
dMn,W

(dM)
n ,Λ(dM)

n

)
= I+L,K

(
W(dM)

n

)
+

1

2
‖yn − (M + dMn)an‖22 + γυ(dMn)

+
µ
(dM)
n

2

∥∥∥dMn + M−W(dM)
n + Λ(dM)

n

∥∥∥2
F

(24)

with µ(dM)
n > 0 and I+L,K the indicator function on (R+)

L×K .
Hence

dM∗
n =

[
(yn −Man)aTn + µ(dM)

n

(
W(dM)

n

−M−Λ(dM)
n

)][
anaTn + (µ(dM)

n + γ)IK

]−1 (25)

and

W(dM)∗
n = max

(
dMn + M + Λ(dM)

n ,OL,K

)
. (26)

4. EXPERIMENTS WITH SYNTHETIC DATA

The method is first evaluated on a 128 × 64-pixel image re-
sulting from linear mixtures of 3 endmembers with L = 160
spectral bands, without any pure pixel to evaluate the method
in a challenging situation. Any mixture has been corrupted
by an additive white Gaussian noise to ensure a signal-to-
noise ratio of 30dB. The corrupted endmembers involved in
the mixture have been generated using the product of refer-
ence endmembers with randomly generated piecewise-affine
functions. Different affine functions have been considered for
each endmember in each pixel, which provides realistic end-
members with controlled variability 1.

4.1. State-of-the-art methods

The proposed method is compared to the VCA [11] / FCLS
[12] algorithms and to the automated endmember bundles
(AEB, [13]). For the proposed method, the endmembers and
abundances have been initialized with VCA/FCLS and the
variability matrices have been initialized with all their entries
equal to eps2. The algorithm is stopped when the relative
difference between two successive values of the objective
function is less than 10−3. The regularization parameters
associated with the augmented Lagrangians have been initial-
ized with the following values: µ(A)(0)

n = µ
(dM)(0)
n = 10−4,

µ
(M)(0)
` = 10−8, and adjusted using the rule described in

[14, p. 20] with τ incr = τ decr = 1.1, µ = 10, εabs = 10−1 and
εrel = 10−4.

1More simulations results are available in [10].
2MATLAB constant eps = 2.22× 10−16.

Table 1. Simulation results for synthetic data
(GMSE(A)×10−2, GMSE(dM)×10−4, RE ×10−4).

VCA/FCLS AEB Proposed method

aSAM(M) 5.0639 5.1104 4.1543
GMSE(A) 2.07 2.11 1.44
GMSE(dM) / / 4.36
RE 2.66 2.66 0.38
time (s) 1 33 1990

The performance of the algorithm has been assessed in
terms of endmember estimation using the average spectral an-
gle mapper (aSAM). In terms of abundance and perturbation
estimations, global mean square errors (GMSEs) have been
computed. Finally, the reconstruction error (RE) detailed in
the following lines has been considered as a measure of fit.

aSAM(M) =
1

K

K∑
k=1

〈mk|m̂k〉
‖mk‖2‖m̂k‖2

GMSE(dM) =
1

NLK

N∑
n=1

‖dMn − d̂Mn‖2F

GMSE(A) =
1

KN
‖A− Â‖2F

RE =
1

LN

∥∥∥Y − Ŷ
∥∥∥2

F

where Ŷ is the matrix formed by the pixels reconstructed with
the estimated parameters Â, M̂ and d̂Mn.

4.2. Results

The performance measures returned by the unmixing meth-
ods are provided in Table 1. The proposed method provides
competitive results when compared to other methods and ex-
hibits lower REs, at the price of a higher computational cost.

Table 2. Experiments conducted on real data (Madonna) (RE
×10−6).

VCA/FCLS AEB ADMM

RE 8.64 5.25 0.43

time (s) 0.41 1.77 1.88

5. EXPERIMENTS WITH REAL DATA

Keeping the same parameters as in Section 4, the proposed
algorithm has been applied to a data-set (31 × 30) composed
of 160 spectral bands extracted from an image acquired in
2010 by the Hyspex hyperspectral scanner over Villelongue,
France. The image is composed of forested and urban areas.
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Fig. 1. Abundance and variability distribution (real data).

Since there is no ground truth for this data set, we present
the unmixing performance in terms of reconstruction error
(see Table 2). The results depicted in Figs. 1 and 2 are con-
sitent with those of VCA/FCLS. Moreover, regular vertical
patterns almost surely due to a sensor defect or miscalibration
during the data post-processing appear on the energy map of
the variability terms. This observation is consistent with the
remark made in [15].

6. CONCLUSION AND FUTURE WORK

This paper introduced a new linear mixing model including
an additive spatially varying perturbation matrix to capture
endmember variability. Hyperspectral unmixing was per-
formed by alternating minimization of an appropriately reg-
ularized cost function, each minimization being performed
by ADMM. Simulations conducted on synthetic and real data
enabled the interest of the proposed solution to be appre-
ciated. The choice of the penalization parameters α, β and
γ was performed by cross validation. The development of
automatic strategies to estimate these parameters remains an
open problem.

REFERENCES

[1] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du,
P. Gader, and J. Chanussot, “Hyperspectral unmixing overview: Geo-
metrical, statistical, and sparse regression-based approaches,” IEEE J.
Sel. Topics Appl. Earth Observations and Remote Sens., vol. 5, no. 2,
pp. 354–379, April 2012.

[2] A. Zare and K. C. . Ho, “Endmember variability in hyperspectral im-
agery,” IEEE Signal Process. Mag., vol. 31, no. 1, pp. 95–104, Jan.
2014.

[3] M. A. Veganzones, L. Drumetz, G. Tochon, M. D. Mura, A. Plaza,
J. M. Bioucas-Dias, and J. Chanussot, “A new extended linear mix-
ing model to adress spectral variability,” in Proc. IEEE GRSS Work-
shop Hyperspectral Image Signal Process.: Evolution in Remote Sens.
(WHISPERS), Lausanne, Switzerland, June 2014.

[4] E. C. Johnson and D. L. Jones, “Joint recovery of sparse signals
and parameter perturbations with parameterized measurement mod-
els,” in Proc. IEEE Int. Conf. Acoust., Speech, and Signal Processing
(ICASSP), Vancouver, Canada, May 2013, pp. 5900–5904.

[5] R. Ammanouil, A. Ferrari, C. Richard, and D. Mary, “Blind and fully
constrained unmixing of hyperspectral images,” IEEE Trans. Image
Process., vol. 23, no. 12, pp. 5510–5518, Dec. 2014.

(a) Road (b) Grass

(c) Ditch

Fig. 2. Endmember estimation on real data (ADMM in red
lines, VCA in green lines, variability in blue dotted lines).

[6] M. S. C. Almeida and M. A. T. Figueiredo, “Blind image deblurring
with unknown boundaries using the alternating direction method of
multipliers,” in Proc. IEEE Int. Conf. Image Processing (ICIP), Mel-
bourne, Australia, 2013, pp. 586–590.

[7] A. Matakos, S. Ramani, and J. A. Fessler, “Accelerated edge-
preserving image restoration with boundary artifacts,” IEEE Trans. Im-
age Process., vol. 22, no. 5, pp. 2019–2029, May 2013.

[8] J. Chen, C. Richard, and P. Honeine, “Nonlinear estimation of mate-
rial abundance in hyperspectral images with `1-norm spatial regular-
ization,” IEEE Trans. Geosci. and Remote Sensing, vol. 52, no. 5, pp.
2654–2665, May 2014.

[9] M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J. F.
Huntington, “ICE: A statistical approach to identifying endmembers
in hyperspectral images,” IEEE Trans. Geosci. and Remote Sensing,
vol. 42, no. 10, pp. 2085–2095, Oct. 2004.

[10] P.-A. Thouvenin, N. Dobigeon, and J.-Y. Tourneret, “Hyper-
spectral unmixing with spectral variability using a perturbed
linear mixing model,” Feb. 2015, submitted. [Online]. Available:
http://arxiv.org/abs/1502.01260/

[11] J. M. Nascimento and J. M. Bioucas-Dias, “Vertex component analy-
sis: a fast algorithm to unmix hyperspectral data,” IEEE Trans. Geosci.
and Remote Sensing, vol. 43, no. 4, pp. 898–910, April 2005.

[12] D. C. Heinz and C. -I Chang, “Fully constrained least-squares linear
spectral mixture analysis method for material quantification in hyper-
spectral imagery,” IEEE Trans. Geosci. and Remote Sensing, vol. 29,
no. 3, pp. 529–545, March 2001.

[13] B. Somers, M. Zortea, A. Plaza, and G. Asner, “Automated extraction
of image-based endmember bundles for improved spectral unmixing,”
IEEE J. Sel. Topics Appl. Earth Observations and Remote Sens., vol. 5,
no. 2, pp. 396–408, April 2012.

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating direc-
tion method of multipliers,” Machine Learning, vol. 3, no. 1, pp. 1–
122, 2010.

[15] C. Févotte and N. Dobigeon, “Nonlinear hyperspectral unmixing with
robust nonnegative matrix factorization,” March 2014, submitted.
[Online]. Available: http://arxiv.org/abs/1401.5649/

23rd European Signal Processing Conference (EUSIPCO)

823


