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ABSTRACT

The method of instrumental variables has been successfully
applied to pseudolinear estimation for angle-of-arrival target
motion analysis (TMA). The objective of instrumental vari-
ables is to modify the normal equations of a biased least-
squares estimator to make it asymptotically unbiased. The
instrumental variable (IV) matrix, used in the modified nor-
mal equations, is required to be strongly correlated with the
data matrix and uncorrelated with the noise in the measure-
ment vector. At small SNR, the correlation between the IV
matrix and the data matrix can become weak. The concept
of selective angle measurements (SAM) overcomes this prob-
lem by allowing some rows of the IV matrix and data matrix
to be identical. This paper demonstrates the effectiveness of
SAM for a previously proposed 3D angle-only IV TMA algo-
rithm. The performance improvement of SAM is verified by
simulation examples.

Index Terms— Selective angle measurements, 3D tar-
get motion analysis, angle-of-arrival localization, instrumen-
tal variables.

1. INTRODUCTION

Tracking of radio emitters has found many applications in
mobile user localization, asset localization, sensor networks
and target tracking in electronic warfare, to name but a few.
In this paper we consider the use of selective angle mea-
surements (SAM) in 3D angle-only target motion analysis
(TMA). The objective of angle-only 3D-TMA is to estimate
the position, velocity and possibly acceleration of a target
from its azimuth and elevation angle measurements collected
by a moving observer (ownship).

Whilst the TMA problem has been studied extensively in
the 2D plane, there is little work reported on the angle-only
3D-TMA problem. In [1] a 3D localization algorithm was de-
rived using an orthogonal vector estimation approach [2], [3]
to estimate the location of a stationary radio emitter from an-
gle measurements. A 3D-pseudolinear estimator (3D-PLE)
and its weighted instrumental variable (WIV) version were
also presented and shown to provide much improved estima-
tion performance close to the maximum likelihood estimator
(MLE). For moving targets, [4] proposes a so-called 3D im-
proved PLE (3D-IPLE) drawing on the MLE cost function
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approximation used in [5], as well as some trigonometric ap-
proximations. The resulting estimator is the 2D-PLE for the
2D-projection of the 3D-TMA problem concatenated with the
3D-orthogonal vector estimator derived in [1]. The bias per-
formance of the resulting estimator is improved by employ-
ing the bias compensation method in [6] and the method of
WIV [7]. A different approach resembling the PLE in [1]
has been adopted in [8], resulting in a 2D-PLE for the xy-
components of the target motion parameter vector and a linear
least-squares solution for the z-component. The bias perfor-
mance of this new 3D-PLE was improved by applying bias
compensation and WIV only to the 2D-PLE part of the es-
timator. The poor performance of the 3D-WIV estimator in
large noise was analysed. The method of SAM, originally
developed for self-localization [9], was employed to improve
the performance of the 3D-WIV estimator in low SNR situa-
tions.

In this paper we consider the application of SAM to the
WIV estimator in [4]. It is shown via numerical simulations
that the SAM estimator can improve the performance of this
WIV estimator at large noise levels thanks to its assurance
of strong correlation between the IV matrix and data matrix.
Section 2 describes the 3D-TMA problem and sets out the
assumptions made. Section 3 summarizes the MLE for 3D-
TMA. An overview of the 3D-IPLE is provided in Section 4.
Section 5 describes the method of SAM applied to the WIV
estimator in [4]. Comparative simulation examples are pre-
sented in Section 6. The paper concludes in Section 7.

2. 3D-TARGET MOTION ANALYSIS PROBLEM

Fig. 1 depicts the 3D-TMA problem. The objective of 3D-
TMA is to estimate the target location p;, from N noisy az-
imuth and elevation angle measurements taken at time in-
stants k € {0,1,..., N — 1}. The angles are related to the
target location p;, = [pu.k, Py.k, P=.k)" and observer location
Tk = [Tk, Ty ks T2k] ] through

A
0, = tan~! A—zk, —m <O <m (1a)
k
Az T T
1 k
. =k D <.
(bk S1 ||.SkH’ 9 < Qbk = (1b)
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Fig. 1. 3D-TMA geometry using azimuth and elevation angles
Ok, Pk

Here tan—! is the 4-quadrant arctangent,

AT, =Pak — Tok
Ayk =Py — Tyk
Az =Dok — T2k
Sk =Dk — Tk
and || - || denotes the Euclidean norm.
‘We make the following assumptions throughout the paper:

The target moves with a constant velocity during the ob-
servation interval k € {0,1,..., N — 1}.

The azimuth and elevation angle measurements are taken
at regular time instants ¢, = k7T/(N — 1) where T is
the length of the observation interval. Let p, denote the
initial target location vector at k£ = 0 and v the constant
velocity vector. Then the target location at time ¢y, is

(2a)
(2b)

pk:p0+tkvo
=M;§

where
0

tk
0

0
0
(77

tk
0
0

|

is the 6 X 1 target motion parameter vector to be estimated
from noisy angle measurements. Given an estimate of tar-
get motion parameters é , P;, can be estimated by substi-
tuting é for & in (2).

The azimuth and elevation angle measurements are cor-
rupted by independent zero-mean Gaussian noise:

ng ~ N (0, oik)
my ~ N(O,a?nk)

M,

O O =

0
0
1

o = O

and

€: |:p0

Vo

O = Ox +ny,
o1 = 1, + M,

where ng and my, are independent.
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e The target is observable. This requires the observer to
outmaneuver the target while collecting the angle mea-
surements [10-13].

3. MAXIMUM LIKELIHOOD ESTIMATOR

Under the independent additive Gaussian noise assumption,
the likelihood function for the angle measurements is

P(BIE) = iz
x exp{ 3 (B~ 9(©) K (% - 9(6))}
where
= o Br o]

is the 2N x 1 vector of noisy angle measurements,
(&) = [00(§),01(8), - .., On-1(8),
¢0(£)) ¢1 (5)7 (R

is the 2IV x 1 vector of azimuth and elevation angles as a
function of & with

on-1(8)])"

o Aye(§) o1 Az(§)
0x(€) = tan Azn(€)’ #r (&) = sin 50| 4
and
Azi(§)
s(8) = |Ayr(§) | = M § —ry,
Az (&)
K = diag(cl ,...,00, 0%, 00, ) is the 2N X

2N diagonal covariance matrix of the angle noise, and | K|
denotes the determinant of K. R
The MLE of the target motion parameters &), is given by

£y = arg min Jyy (€) (5)
£€RS
where Jy () is the ML cost function
€)= L OKe(E), e€) = (e ©

Equation (5) describes a nonlinear least squares estimator
with no closed-form solution. A numerical solution can be
obtained by using the Gauss-Newton (GN) algorithm:

(I (@K T(0) T T () K e(§(1)),
i=0,1,... (7

E(i+1) = €(i) +

Here J (i) is the 2N x 6 Jacobian matrix of 4 (&) with respect
to € evaluated at £ = £(i):
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where a () is a unit vector orthogonal to the 2D-projection

of the estimated 3D-range vector and by (&) is a unit vector
orthogonal to the estimated 3D range vector [1]:

[ sin Qk(égi))
- COS%c(ﬁ(i))

Tsin ¢ (€(1)) cos 0 (& (1))
sin ¢y (€(7)) SiI} 0r(&(4))
— cos ¢ (£(1))

_ |Azg(€)
Sy, k(&) = {Ay:(@}

is the projected range vector parameterized by &.

Assuming a priori knowledge of the noise covariance ma-
trix K, the Cramer-Rao lower bound (CRLB) for the 3D-
TMA problem is given by

ar(£(i)) ©)

bi.(£(4)) (10)

and

CRLB = (JIK~1Jg,)~* an

where J, is the Jacobian matrix evaluated at the true target
motion parameter vector.

4. OVERVIEW OF 3D-IPLE

In [4] a matrix equation linear in & is obtained from a small-
noise approximation of the MLE cost function following [5].
The resulting 3D-IPLE can also be derived by rewriting (1a)
as

sin(0p —nx) Ay
cos(ék —ng) Az

and lumping the noise terms together to get [14]

[sinék, —cosék,O]Mkﬁ = [sinék, —cosék,O}rk + Nk

(12)
where 1, = ||sk|| cos ¢ sin ny, and rewriting (1b) as
sin(¢y, — my,) Az
cos(¢r, —mi)  l8ay.kll

or

[sin b1 cos Oy, sin ¢y, sin By, — cos ék]Mkﬁ

= [sin J)k cos ék, sin q@k sin ék, — oS q@k]rk +uv (13)
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where v, = || sk ||(cos ¢y sin Pr COSNE — COS Py, Sin Ok)-
Stacking (12) and (13) for k = 0,1,..., N — 1 gives
H¢=d+w (14)
where
H = [Mg'uo?"' 7M7]:7—1UN—1a
MOTUO» e ;M,JI\W/'flval}T
d=[rouo,- - 7rﬁ,1uw_1,r§vo,-~- 77",11\"171'UN—1]T
w:[n(b '777N—17V03"'7VN—1]T
up = [sinék,—cosék,O]T
[

"

We note that (14) is made up of two linear matrix equations
concatenated; one for the 2D-PLE (projection of the 3D-TMA
problem into the zy-plane) and the other for the orthogonal
vector estimator [1].

The 3D-IPLE in [4] is the least-squares solution of (14):

Epp = (HTH) 'H"d. (15)

5. SELECTIVE ANGLE MEASUREMENTS

The correlation between H and w introduces undesirable es-
timation bias. Modifying the normal equations for the 3D-
IPLE H'Hép p = H dto GTHE, = GTd gives the IV
estimator:

&y =(G"H)'G"d. (16)

This estimate is asymptotically unbiased if GT H is full-rank
and E{G"w} = 0 [15]. An effective and simple method
for constructing the IV matrix satisfying these requirements
asymptotically was proposed in [7], which comprises the fol-
lowing steps:

e Obtain an initial estimate EIPLE.

e Estimate the angles based on this initial estimate (cf. (4))

ék = 9k(£1PLE)7 ng = (bk(éIPLE)'

e Substitute the angle estimates for angle measurements in
H to construct the IV matrix G:

G = H|9~0:é0;~~7§N—1:éN—1;&0:(2307---;<£N—1:<2;N—1 '
Introducing a weighting matrix

W = K diag l1ssy0(Emie) |2+ syv-1(Epie) |2,

(||30('§11>L1~:)||2 - ||3wy,0(élpLE)H2‘772m)a T
)

2
a7

)

(”stl(élPLE)HQ - ”st’Nfl(éIPLE)”QUnN,l
results in a weighted IV estimator (3D-IWIV) [4]:
éIWIV = (GTW_IH)ilGTW_ld
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Fig. 2. Simulated 3D-TMA geometry.

which is asymptotically unbiased and efficient [16].

The matrices G' and H are required to correlate well so
that the product G* H is well-conditioned. If the unit vectors
that make up these matrices do not align well as a result of
large differences between ék and ék, and between ék and qgk,
the correlation between G and H can be weakened. This
will increase the condition number of G H and MSE. To
avoid ill-conditioning of G'H , some rows of the IV matrix
can be forced to be identical to the corresponding rows of H,
depending on the difference between the angle estimates and
measurements. This leads to the idea of SAM:

(‘?lw(%k) if |0 — 05| < o and |¢x — x| < Bi

= {02

otherwise.

—~

(18)
Here «j and i are threshold values that should be chosen
proportional to o, and o,,,, respectively. The angle esti-
mates strongly influence the threshold values. The appropri-
ate ranges for the thresholds are 20, < o < 5o, and
20m,, < Bk < 50pm,,-
_ The matrices G and H are maximally correlated if 0, =
6, and ¢, = ¢p, k =0,1,..., N — 1, in G. This amounts to
replacing G with H, which results in a least-squares estima-
tor with severe bias problems. To retain some benefits of bias
reduction, (18) offers a compromise solution. We will refer to
the 3D-IWIV estimator employing (18) as the 3D-SAM-IWIV .
The performance improvement of SAM is determined by the
reduction in the condition number of GTW ~! H. The rela-
tion of MSE performance to condition number will be demon-
strated in the next section.

6. SIMULATIONS

The simulated TMA geometry is depicted in Fig. 2. The tar-
get moves with a constant velocity of vg = [60, 30, 1]7 m/s
starting from an initial position p, = [500,0,200]7 m. The
observer takes N = 30 angle measurements at regular time
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Fig. 3. Bias and RMSE performance.

intervals (tx+1 — tx = 0.5 s) while following a three-leg
constant-velocity trajectory (ro = [0,0,50]7 m and the
observer velocity alternates between [25,—30,0] m/s and
[25,30,0] m/s from one leg to another). The azimuth and
elevation angle noise is i.i.d. with standard deviation o.

The MLE is implemented using the GN algorithm, initial-
ized to the 3D-IPLE and run for 10 iterations. The 3D-IWIV
and 3D-SAM-IWIV estimators use the 3D-IPLE to con-
struct the IV matrix H and the weighting matrix W. For
the 3D-SAM-IWIV estimator the threshold parameters are
ayp = - =any_1 = dboand By = -+ = By_1 = bo.
All bias and RMSE values are estimated using 2,000 Monte
Carlo simulation runs.

Fig. 3 shows the simulated bias norm and RMSE of the
3D-PLE in [8], 3D-IPLE, 3D-IWIV, 3D-SAM-IWIV and
MLE. The RMSE plot also includes the CRLB (square root
of trace of CRLB). For ¢ > 3° both the 3D-IWIV and MLE
exhibit a sharp increase in RMSE. This is due to the loss
of correlation between G and H for the 3D-IWIV estimator
and the threshold effect for the MLE. The 3D-SAM-IWIV
avoids rapid deterioration of RMSE by assuring a strong cor-
relation between G and H. The method of SAM causes a
nonvanishing residual correlation between the IV matrix and
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Fig. 4. Averaged condition number of GT W ' H.

angle noise, which explains the slight degradation in the bias
norm as the angle noise is increased. We also observe that the
3D-PLE [8] outperforms the 3D-IPLE [4] by a large margin.
In Fig. 4 the averaged condition numbers of G"W'H
for the 3D-IWIV and 3D-SAM-IWIV estimators are plotted
against noise standard deviation. As the angle noise increases,
the condition number of the 3D-IWIV significantly exceeds
that of the 3D-SAM-IWIV, which demonstrates the effective-
ness of SAM in maintaining a strong correlation between G
and H. This also explains the improved RMSE performance
of the 3D-SAM-IWIV compared with 3D-IWIV (see Fig. 3).

7. CONCLUSION

The method of SAM has been applied to the 3D-IWIV pro-
posed in [4]. The loss of correlation between the IV matrix
G and the data matrix H was shown to impact the RMSE
performance adversely. The effectiveness of SAM in com-
batting this loss was demonstrated by simulation examples.
It was observed that both the RMSE performance and con-
dition number of G* W ~' H are significantly improved by
employing SAM in the IV matrix.
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