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ABSTRACT

For an almost-cyclostationary signal, mean-square consistent

and asymptotically complex normal estimators of the cyclic

statistics exist, provided that the signal has finite or practically

finite memory and the cycle frequency is perfectly known.

In the paper, conditions are derived to obtain a mean-square

consistent and asymptotically complex normal estimator of

the cyclic autocorrelation function with estimated cycle fre-

quency. For this purpose, a new lemma on conditioned cu-

mulants of complex-valued random variables is derived. As

an example of application, the problem of detecting a rapidly

moving source emitting a cyclostationary signal is addressed

and the case of a low Earth orbit satellite considered.

Index Terms— Cyclostationarity; Asymptotic Normal-

ity; Doppler effect

1. INTRODUCTION

Cyclostationarity properties of modulated signals have been

successfully exploited in several problems in communica-

tions and radar/sonar [8]. In particular, in recent years,

cyclostationarity-based detectors have been adopted in spec-

trum sensing for cognitive radio [1], [10], [11], [12], [13],

[17], [19], [20].

If a cycle frequency of the signal-of-interest exists which

is not shared with the interfering signals, then cyclostationarity-

based detection and estimation algorithms provide satisfac-

tory performance, provided that a sufficiently long obser-

vation interval is adopted for the estimation of the cyclic

statistical functions. In fact, under mild assumptions on the

finite or practically finite memory of the process and on the

lack of cycle frequency cluster points, mean-square consis-

tent and asymptotically complex normal estimators of the

cyclic statistical functions exist [4], [5], [7, Chap. 15], [14,

Sec. 2.4.2]. These estimators assume that the cycle frequency

is exactly known. In the case of non perfect knowledge of the

cycle frequency, the estimates are significantly asymptotically

biased.

In the paper, the problem of estimating the cyclic auto-

correlation function at a value of cycle frequency which is in
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turn an estimate is addressed. Conditions are provided such

that the cyclic correlogram with estimated cycle frequency is

a mean-square consistent and asymptotically complex normal

estimate of the cyclic autocorrelation function. For this pur-

pose, a new lemma on conditioned cumulants is proved.

As application of the obtained results, the statistical test

for presence of cyclostationarity introduced in [3] and ex-

ploited in cognitive radio in [10], [13], [17], is considered

to detect the presence of a cyclostationary moving source.

The techniques in [3], [10], [13], [17] exploit the knowl-

edge of a single or multiple cycle frequencies and of a single

or multiple lags at which the cyclic autocorrelation function

of the signal to be detected is significantly non zero. When

the cycle frequency is deterministic and perfectly known,

the cyclic autocorrelation estimate is asymptotically com-

plex normal and a significance test on a properly normalized

version of the estimate can be performed [3].

In the case of a rapidly moving transmitter, the transmitted

cycle frequency is modified at the receiver due the Doppler

effect. In such a case, an estimated cycle frequency should be

used in the detection statistic. By exploiting the results of the

paper, one is guaranteed that the asymptotic normality of the

cyclic autocorrelation estimate is preserved even if the cycle

frequency is not perfectly known, provided that the estimate

is sufficiently accurate. Thus, detectors designed assuming a

known cycle frequency can be adopted by plugging the cycle

frequency estimate in place of the known cycle frequency. In

the paper, it is shown that a sufficient accuracy is achieved by

the cycle frequency estimator proposed in [2]. As an example,

the problem of detection the signal transmitted by a low earth

orbit (LEO) satellite is considered.

2. ALMOST-CYCLOSTATIONARY PROCESSES

2.1. Statistical Characterization

A second-order complex-valued stochastic process x(t) is

said to be almost-cyclostationary (ACS) in the wide sense if

its first- and second-order moments are almost-periodic func-

tions of t. Thus, for the second-order moments the following
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(generalized) Fourier series expansion holds

Rx(t, τ) , E
{

x(t+ τ) x(∗)(t)
}

=
∑

α∈A

Rα
x
(τ) ej2παt . (1)

In (1), superscript (*) denotes an optional complex conjuga-

tion and subscript x , [x x(∗)]. If the conjugation is present,

then Rxx∗(t, τ) is the autocorrelation function. If the conju-

gation is absent, then Rxx(t, τ) is the conjugate autocorre-

lation function. Both functions are necessary for a complete

second-order characterization in the wide-sense of complex-

valued processes [16]. The set A is the countable set, depend-

ing on (∗), of the possibly incommensurate (conjugate) cycle

frequencies α, and the Fourier coefficients

Rα
x
(τ) , lim

T→∞

1

T

∫ T/2

−T/2

Rx(t, τ) e
−j2παtdt (2)

are referred to as (conjugate) cyclic autocorrelation functions.

If A = {k/T0}k∈Z, for some T0 > 0, the process x(t) is said

to be cyclostationary with period T0 [8].

ACS processes are an appropriate model for almost-all

modulated signals adopted in communications and radar/sonar

[8].

2.2. Cyclic Autocorrelation Estimator

The natural estimator of the (conjugate) cyclic autocorrela-

tion function at cycle frequency α is the (conjugate) cyclic

correlogram

R(T )
x

(α, τ) ,
1

T

∫ T/2

−T/2

x(t+ τ) x(∗)(t) e−j2παtdt . (3)

Let as consider a zero-mean process x(t) satisfying the

following assumptions for every conjugation configuration in

the definitions of kth-order statistics for k > 2.

AS1. The 2nd- and 4th-order cumulants are uniformly

almost-periodic functions of t for all values of the lag param-

eters [14, As. 2.4.2] with sequences of the suprema of the

Fourier coefficients that are summable [14, As. 2.4.3].

AS2. For every k, the kth-order moments are bounded

[14, As. 2.4.4, 2.4.16].

AS3. For every k, the kth-order cumulants are summable

functions with respect to the lag parameters [14, As. 2.4.8,

2.4.15].

AS4. There is no cluster of cycle frequencies [14,

As. 2.4.10].

The asymptotic complex normality of the cyclic correlo-

gram is proved in [14, Sec. 2.4.2] for the generalized almost-

cyclostationary processes. In the special case of ACS process

such a result specializes into the following one. See also [4],

[5], [7, Chap. 15].

Theorem 2.1 Under Assumptions AS1–AS4, the (conjugate)

cyclic correlogram R
(T )
x (α, τ) is a mean-square consistent

estimator of the (conjugate) cyclic autocorrelation function

Rα
x
(τ). Moreover, the random variables

V
(T )
i ,

√
T
[

R(T )
x

(αi, τi)− Rαi

x
(τi)

]

i = 1, . . . ,M (4)

are asymptotically jointly complex normal. �

2.3. Cycle Frequency Estimators

In this section, (conjugate) cycle frequency estimators that

are considered in the following are briefly described and their

properties summarized.

Let D(α0, δα) , [α0 − δα, α0 + δα] be an interval con-

taining only one (conjugate) cycle frequency, say α0. That is,

if α ∈ D(α0, δα), then Rα
x
(τ) 6≡ 0 only for α = α0.

In [2] the discrete-time counterpart of the estimator

α(T ) = arg max
α∈D(α0,δα)

∫ τM

−τM

∣

∣R(T )
x

(α, τ)
∣

∣

2
dτ (5)

is proposed, where τM is such that Rα0

x
(τ) is significantly

nonzero in [−τM, τM]. It is shown that under mild regularity

assumptions expressed in terms of summability of cumulants,

for T → ∞ it results T 3/2[α(T )−α0

]

→ N (0, σ2) with σ2 =

limT→∞ T 3E{|α(T )−α0|2}. Moreover, T
[

α(T )−α0

]

→ 0
almost surely.

Other (conjugate) cycle frequency estimators that have

been considered for cognitive radio applications are the cy-

cle frequency domain profile (CDP) [12], and the estimator

proposed in [11]. The latter is an approximate and computa-

tionally efficient version of the estimator in [2].

3. CYCLIC CORRELOGRAM WITH ESTIMATED

CYCLE FREQUENCIES

The proof of the asymptotic complex normality of the (con-

jugate) cyclic correlogram with estimated cycle frequency is

based on the following lemma.

Lemma 3.2 Let X1, . . . ,Xk, and Y be complex-valued ran-

dom variables. The kth-order cumulant of X1, . . . ,Xk can be

expressed as

cum {X1, . . . ,Xk}
= EY

{

cum {X1, . . . ,Xk | Y}
}

−
∑

P
p>1

(−1)p−1(p− 1)!

[

EY

{

p
∏

i=1

EXµi
|Y

{

∏

ℓ∈µi

Xℓ|Y
}}

−
p
∏

i=1

EY

{

EXµi
|Y

{

∏

ℓ∈µi

Xℓ|Y
}}

]

(6)
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where P is the set of all distinct partitions of {1, . . . , k},

each constituted by the subsets µ1, . . . , µp, and Xµi
is the

|µi|-dimensional vector whose entries have indices in µi, |µi|
being the size of the set µi.

Proof: For cumulants of complex random variables de-

fined according to [14, Sec. 1.4.2], [18, App. A], the Leonov-

Shiryaev relationship [9] links cumulants and moments:

cum {X1, . . . ,Xk} =
∑

P

(−1)p−1(p− 1)!

p
∏

i=1

E
{

∏

ℓ∈µi

Xℓ

}

(7)

By expressing the moments in (7) as moments conditioned to

Y and then averaged over Y, and accounting for the fact that

µi

⋂

µj = ∅ for i 6= j, after some manipulations (6) follows.

The result can be easily extended to the case of Y random

vector. �

Theorem 3.3 Let α
(T )
i be estimators of the (conjugate) cycle

frequencies α0,i defined accordingly with (5), based on non-

overlapping (conjugate) cycle frequency sets Di(α0,i, δαi),
and converging almost-surely to α0,i, i = 1, . . . ,M as T →
∞. Under assumptions AS1–AS4, the random variables

V
(T )
i ,

√
T
[

R(T )
x

(

α
(T )
i , τi

)

−R
α0,i

x (τi)
]

i = 1, . . . ,M

(8)

are asymptotically (T → ∞) zero-mean jointly complex nor-

mal with asymptotic covariance matrix with entries Σij and

asymptotic conjugate covariance matrix with entries Σ
(c)
ij

having the same expressions [14, eqs. (2.146) and (3.137)]

for the case of known (conjugate) cycle frequencies.

Proof: The proof is only sketched here for the lack of

space. Starting from the asymptotic complex normality of the

random variables V
(T )
i s conditioned to the α

(T )
i s, as T → ∞

we have

1) E{V (T )
i } → 0;

2a) cov{V (T )
i , V

(T )
j } → Σij finite;

2b) cov{V (T )
i , V

(T )
j

∗} → Σ
(c)
ij finite;

3) cum{V (T )
1 , . . . , V

(T )
k } → 0 for k > 3.

1) is proved starting from the expression of the bias of

the (conjugate) cyclic correlogram [14, Theorem 2.4.6] and

exploiting the properties of the estimate α
(T )
i .

2a) and 2b) are proved starting from the expressions of

the covariance and conjugate covariance of the (conjugate)

cyclic correlograms [14, Theorems 2.4.7 and 3.7.1] and using

Lemma 3.2 with k = 2.

3) is proved using [14, Lemma 2.4.17], Lemma 3.2 with

k > 3, and exploiting the asymptotic independence of α
(T )
i

and α
(T )
j for i 6= j.

Thus, the logarithm of the joint characteristic function of

V
(T )
i , i = 1, . . . , k, is a quadratic form as T → ∞. That is,

the V
(T )
i are asymptotically complex normal. �

4. NUMERICAL RESULTS

The empirical marginal cumulative distribution functions

(CDFs) of the real and imaginary parts of V
(T )
i , normal-

ized to the respective variances σR and σI, are evaluated by

1000 Monte Carlo trials for a data-record length T = 213Ts,

where Ts is the sampling period. The signal x(t) is a pulse-

amplitude modulated signal with binary stationary white

modulating sequence, raised cosine pulse with excess band-

width η = 0.35, and bit period Tp = 8Ts.

In Fig. 1, results for known cycle frequency α = αtrue

(V
(T )
i as in (4)) and estimated cycle frequency α = α(T )

(V
(T )
i as in (8)), for τ = 0, are compared with the CDF of

a standard normal random variable. Accordingly with the re-

sults of Theorem 3.3, the curves of the CDFs for estimated

cycle frequency practically overlap those for known cycle fre-

quency and both very accurately fit the CDF of a standard

normal random variable.
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Fig. 1. Marginal CDF of the real and imaginary parts of V
(T )
i

, nor-

malized to the respective variances σR and σI, for known cycle fre-

quency α = αtrue and estimated cycle frequency α = α
(T ), with

τ = 0, compared with the CDF of a standard normal random vari-

able.
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5. APPLICATION TO THE DETECTION OF A

MOVING SOURCE

In this section, as an example of application, the problem of

detecting a moving cyclostationary source is addressed.

Let us consider a LEO satellite at altitude h = 200 km

and with orbital speed vo = 28061.5 km h−1. It transmits a

direct-sequence spread-spectrum (DSSS) signal with pseudo-

noise (PN) modulating sequence, chip period Tp = 0.06 µs,
bit period Tb = NcTp, with Nc > 2, and carrier frequency

fc = 2 GHz. Within observation intervals of interest in the

applications, the relative radial speed v̺ between the satellite

and a receiver on the Earth can be considered constant. Thus,

due to the Doppler effect, the transmitted signal experiences a

linearly time-varying delay. It reflects into a frequency shift of

the carrier and a time scaling of the complex envelope. That

is, denoted by x(t) the complex envelope of the transmitted

signal, the complex envelope of the received signal is given

by

r(t) = a x(s(t− τ0)) e
j2πνt + n(t) . (9)

In (9), a is a complex gain that accounts for attenuation and

possible mismatch between the phases of the transmitter and

receiver oscillators, τ0 is the propagation delay, s is a time-

scale or time-stretch factor given by s = 1 − v̺/c with c
medium propagation speed, and ν is a frequency shift due to

the Doppler effect on the carrier and possible frequency mis-

match between transmitter and receiver oscillators. The term

n(t) is a disturbance signal that accounts for both additive

Gaussian noise and nonstationary interference.

The statistical test for presence of cyclostationarity pre-

sented in [3] compares with a threshold the test statistic

T = T z
T(α, τ) C−1(α, τ) z(α, τ) (10)

where z(α, τ) is the column vector whose entries are the real

and imaginary parts of R
(T )
rr∗(α, τ) and C(α, τ) is a consis-

tent estimate of the covariance matrix of z(α, τ). If T ex-

ceeds the threshold, then r(t) is declared to exhibit cyclo-

stationarity at (α, τ) (hypothesis H1 verified); if T is below

the threshold, then r(t) is declared to not exhibit cyclosta-

tionarity at (α, τ) (hypothesis H0 verified). Starting from a

desired false-alarm probability Pfa, the threshold can be an-

alytically evaluated since the test statistic T has a χ2
2 distri-

bution under H0 due to the asymptotic complex normality of

V (T ) =
√
T [R

(T )
rr∗(α, τ) − Rα

rr∗(τ)].
In the case of no motion between transmitter and receiver,

the test can be performed by estimating the cyclic autocorre-

lation function at the pair (α0, τ) = (1/Tp, Tp/2) since for

these values of cycle frequency and lag, the DSSS signal x(t)
with PN modulating sequence and rectangular pulse exhibits

a strong degree of cyclostationarity [8].

In the case of relative motion between transmitter and re-

ceiver, if α0 is a cycle frequency of x(t) then, due to the

Doppler effect, the received signal exhibits cyclostationarity

at cycle frequency α = sα0 [14, Sec. 7.7]. The value of s is

close to 1 in practical applications and the cycle frequency α
at the receiver can be approximated to α0 only if

|α− α0| = |1− s| |α0| ≪ 1/T (11)

where 1/T is the cycle frequency resolution for a data-record

length T .

In the experiment, additive white Gaussian noise (AWGN)

n(t) is present with slowly varying power spectral density

level. The average SNR ranges from –24 dB to –12 dB. In

order to obtain a reliable cyclic autocorrelation estimate and,

hence, a satisfactory detection performance, a data record

length T = NbTs is assumed, with Nb = 217 number of

processed bits and Ts = Tp/4 sampling period. The value

of 1 − s is of the order of 10−5 in the considered satellite

application [15]. Consequently, (11) is not satisfied and the

cycle frequency at receiver needs to be estimated.

The cycle frequency estimator proposed in [2] (Section

2.3) with δα = (1/Tp)|v̺|max/c, τM = Tp, is adopted and

the estimate α(T ) is plugged into the test statistics (10). The

covariance matrix C is estimated by a subsampling technique

accordingly with [14, Secs. 2.6.4.1, 6.3.5]. The consistency

of the estimate can be proved by following the guidelines in

[6] for the distribution estimate.

In Fig. 2, the probability of detection Pd, evaluated over

1000 Monte Carlo trials, for Pfa = 0.01, is presented for

the test statistics (10) as a function of SNR. The following

cases are considered: (o) known true cycle frequency (α =
αtrue = sα0); (∗) estimated cycle frequency (α = α(T ));

(×) neglected Doppler effect (α = α0). In addition, the per-

formance of the energy detector (♦) is also considered. The

detector with estimated cycle frequencies has performance

practically equivalent to that of the detector with known cy-

cle frequency and performs well for SNR > –16 dB. This is

in accordance with the result of Theorem 3.3 that Σij and

Σ
(c)
ij have the same expressions of the case of deterministic

known cycle frequency. In contrast, the detector that neglects

the Doppler effect and assumes as cycle frequency that of the

transmitted signal, has very poor performance. The poor per-

formance of the energy detector is due to the variability of the

power spectral density level.

Simulation results not reported here for the lack of space

show that satisfactory performance can be obtained with the

CDP method [12] and a slightly worse performance with the

estimator proposed in [11].

6. CONCLUSION

The asymptotic joint complex normality of the (conjugate)

cyclic correlograms with estimated cycle frequencies is

proved. For this purpose, cycle frequency estimates almost-

surely convergent to the true values with sufficiently fast rate

must be used. The covariance and conjugate covariance of
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Fig. 2. Pd as a function of SNR for: (o) detector with true cycle

frequency (α = αtrue = sα0); (∗) detector with estimated cycle

frequency (α = α
(T )); (×) detector that neglects the Doppler effect

(α = α0); (♦) energy detector.

the (conjugate) cyclic correlograms have the same expres-

sions as in the case of perfectly known cycle frequencies.

As an example of application, the detection of the signal

emitted by a LEO satellite is considered. A widely adopted

cyclostationarity-based detector that assumes the asymptotic

normality of the estimate of the cyclic autocorrelation func-

tion is considered. It is shown that the performance of the

detector designed for the case of known cycle frequency does

not degrade if an accurate estimate of the cycle frequency is

plugged into the test statistics in place of the known cycle

frequency.
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