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ABSTRACT

We consider the identification of nonlinear filters using pe-

riodic sequences. Perfect periodic sequences have already

been proposed for this purpose. A periodic sequence is called

perfect for a nonlinear filter if it causes the basis functions

to be orthogonal and the autocorrelation matrix to be diag-

onal. In this paper, we introduce for the same purpose the

quasi-perfect periodic sequences. We define a periodic se-

quence as quasi-perfect for a nonlinear filter if the resulting

auto-correlation matrix is highly sparse. The sequence is ob-

tained by means of a simple combinatorial rule and is formed

by samples having few discrete levels. These characteristics

allow an efficient implementation of the least-squares method

for the approximation of certain linear-in-the-parameters non-

linear filters. A real-world experiment shows the good perfor-

mance obtained.

Index Terms— Least-squares approximation, second-

order nonlinear systems, quasi-perfect periodic sequences,

sparse auto-correlation matrix.

1. INTRODUCTION

Least-squares (LS) algorithms belong to the class of esti-

mation methods that can be solved exactly using measured

values of input signal realizations. In principle, they are used

for modeling unknown linear systems, by often applying

stochastic input signals. The optimal least-square solution

that minimizes the mean-square error (MSE) between the

output of the unknown system and that of the modeling fil-

ter is obtained by multiplying the inverse auto-correlation

matrix of the vector collecting the input samples by the cross-

correlation vector between the unknown system output and

the input samples. This procedure can be easily extended to

the identification of nonlinear systems if the modeling filter

is represented as a linear-in-the-parameters (LIP) nonlinear

filter [1]. In fact, a LIP filter is characterized, as linear fil-

ters, by the linearity relationship of its output with respect

to the filter coefficients. As a consequence, the optimal

least-square solution is formally the same as for linear filters.

∗Part of this work has been supported by DiSBeF Research Funds.

The only difference is that, in place of the input samples,

it is necessary to use the corresponding values of the ba-

sis functions defining the LIP nonlinear filter. The class of

these filters is broad and includes, among others, Volterra

filters [2], bilinear filters [2], functional link artificial neural

networks (FLANN) [3], and piecewise linear regressors [4].

The Volterra filter, exploiting polynomial basis functions

formed by products of input samples, is perhaps the most

famous LIP model. In fact, in contrast to other members

of this class, Volterra filters are universal approximators for

causal, time-invariant, finite-memory, continuous, nonlin-

ear systems, i.e., they can arbitrarily well approximate these

filters according to the Stone-Weierstrass theorem [5]. How-

ever, their basis functions are not mutually orthogonal. To

overcome this difficulty, two new LIP nonlinear filters have

been recently introduced that replicate the construction rule

of Volterra filters but use different basis functions. They are

the even mirror Fourier nonlinear (EMFN) filter [6], [7], [8],

based on even mirror symmetric trigonometric basis func-

tions, and the Legendre filter [9], [10], based on Legendre

polynomials. Both filters are universal approximators, in

the sense specified above. Moreover, the basis functions

of EMFN and Legendre filters are, respectively, mutually

orthogonal for white uniform input signals in the interval

[-1, +1]. As a consequence, EMFN and Legendre models

can be simply estimated by means of the so-called cross-

correlation method [11]. Indeed, in this situation, the auto-

correlation matrix tends to become diagonal, as far as the

number of the input samples increases, making it simple to

compute its inverse. The cross-correlations between each

basis function and the output of the unknown system need

still to be calculated and eventually the result of the cross-

correlation method coincides with the optimal LS solution.

The drawback of the method, when stochastic inputs are used,

is the huge number of input samples necessary to obtain a di-

agonal structure for the auto-correlation matrix. To overcome

this difficulty, it is possible to resort to deterministic signals

such as perfect periodic sequences (PPSs), able to guarantee

the orthogonality of the basis functions on a finite interval

for white uniform input signals in the interval [-1, +1]. A

periodic sequence is perfect for a given filter if all the cross-
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correlations between two different basis functions, estimated

over a period of N samples, are equal to zero. PPSs have

been exploited for the identification of linear filters [12–14]

and the derivation of efficient least mean-squares adaptive

algorithms [15–17]. More recently, it has been shown that

PPSs can be developed even for EMFN filters [18], [19] and

Legendre filters [10], [20]. The PPSs are computed by deriv-

ing an undetermined system of nonlinear equations involving

the EMFN and Legendre basis functions, and then solving it

by means of the Newton-Raphson method. Since the number

of equations exponentially increases with the order P and

geometrically with the memory N of the nonlinear filter, only

kernels of order P = 1, 2 and 3 are usually considered. It

has been also shown in [10], [19] that the number of non-

linear equations can be reduced exploiting symmetry and

oddness conditions. As a consequence, the Newton-Raphson

method becomes feasible, but at the expense of an increased

length L of the PPS. PPSs for EMFN and Legendre filters

of order P = 2 and P = 3 are available at the web site

http://www.units.it/ipl/res PSeqs.htm. In

consideration of the diagonal structure of the auto-correlation

matrix, the LS algorithm can be efficiently computed.

The aim of this paper is to define alternative, not perfect,

sequences that, anyway, permit us to identify nonlinear sys-

tems using LS algorithms with reduced computational costs.

To this purpose, it is necessary to relax some of the char-

acteristics of the PPS, such as the diagonality of the auto-

correlation matrix, and add some new constraints, such as the

representation of the sequence samples with a small number

of levels. The resulting sequence described in this paper is

called a quasi-perfect periodic sequence (QPPS). It will be

shown that, in contrast to PPSs, the QPPSs are the same for

EMFN, Legendre and even Volterra filters. For sake of sim-

plicity, the discussion is limited here to filters formed with

only first- and second-order kernels.

The paper is organized as follows. In Section 2, basic no-

tions on EMFN and Legendre filters are summarized. In Sec-

tion 3, the generation rule of a QPPS for second-order EMFN,

Legendre and Volterra filters is presented. Further details on

QPPSs and experimental results are presented in Section 4.

Conclusions follow in Section 5.

The following notation is used throughout the paper. In-

tervals are represented with square brackets, R1 is the unit

interval [−1,+1], < x(n) >L indicates time average over L
successive samples of x(n), the operator ⌈·⌉ indicates the first

integer greater than or equal to the real argument.

2. BASIC NOTIONS ON EMFN AND LEGENDRE

FILTERS

It has been shown in [6], [7], [9], [10] that EMFN and Leg-

endre filters are universal approximators for the input-output

relationship of discrete-time, time-invariant, finite-memory,

Table 1. Basis functions of EMFN filters
Order 1:

sin[ 1
2
πx(n)], . . . , sin[ 1

2
πx(n−N + 1)]

Order 2:
cos[πx(n)], . . . , cos[πx(n−N + 1)],

sin[ 1
2
πx(n)] sin[ 1

2
πx(n− 1)], . . . ,

sin[ 1
2
πx(n−N + 2)] sin[ 1

2
πx(n−N + 1)],

sin[ 1
2
πx(n)] sin[ 1

2
πx(n− 2)], . . . ,

sin[ 1
2
πx(n−N + 3)] sin[ 1

2
πx(n−N + 1)],

...

sin[ 1
2
πx(n)] sin[ 1

2
πx(n−N + 1)]

Table 2. Basis functions of Legendre filters

Order 1:

x(n), x(n− 1), . . . , x(n−N + 1)

Order 2:

leg2[x(n)], leg2[x(n− 1)], . . . , leg2[x(n−N + 1)],
x(n)x(n− 1), ..., x(n−N + 2)x(n−N + 1),
x(n)x(n− 2), ..., x(n−N + 3)x(n−N + 1),

...

x(n)x(n−N + 1).

causal, continuous, nonlinear systems given by

y(n) = f [x(n), x(n− 1), . . . , x(n−N + 1)], (1)

where f is a real continuous function and x(n) belongs toR1.

The basis functions of EMFN filters are even mirror symmet-

ric trigonometric functions, while those of Legendre filters

are products of Legendre polynomials. Table 1 and Table 2

report the basis functions of order 1 and 2 of an EMFN and

a Legendre filter, respectively, with memory of N samples.

The Legendre polynomials legk+1(ξ) of Table 2 are obtained

from the recursive relation

legk+1(ξ) =
2k + 1

k + 1
ξlegk(ξ)−

k

k + 1
legk−1(ξ), (2)

where leg0(ξ) = 1, leg1(ξ) = ξ, and k is the order of the basis

function. For sake of simplicity, in the following derivations

the basis function of order 0, which corresponds to an offset,

is not taken into account. It is worth noting that the ba-

sis functions of a second-order Volterra filter are those given

in Table 2, but replacing leg2[x(n − i)] with x2(n − i), i =
0, · · · , N − 1. By construction, EMFN and Legendre filters

have the same complexity, i.e., number of coefficients, of a

Volterra filter with the same order and memory. Therefore,

all these filters, obtained in our case as a linear combination

of the kernels of order 1 and 2, have a number of basis func-

tions and a number of coefficients equal to

NT =

(

N + 2

N

)

− 1. (3)

The input-output relationship of an EMFN, Legendre or

Volterra filter, or in general of a LIP nonlinear filter, with
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memory of N samples, can be written as a linear combina-

tion of their respective basis functions fj(n)

ŷ(n) =

NT
∑

j=1

hjfj(n). (4)

Using a vector notation, (4) becomes

ŷ(n) = h · fT (n), (5)

where
h = [h1, h2, ..., hNT

],

and
f(n) = [f1(n), f2(n), ..., fNT

(n)].

Then, the filter coefficients of the optimal LS solution are ob-

tained, as for all the LIP nonlinear filters, by the equation

ho = R
−1

ff Pyf , (6)

since the output is linear with respect to the filter coefficients

In (6), R−1

ff is the inverse of the NT × NT auto-correlation

matrix of the basis functions of the LIP nonlinear filter and P

is the NT×1 cross-correlation vector between the output y(n)
of the unknown system and the basis functions. The elements

of Rff are computed as time averages on L consecutive sam-

ples of the input x(n) as follows,

rjk =< fj(n)fk(n) >L, j, k = 1, ..., NT . (7)

The elements of the vector P are similarly computed as time

averages, on L consecutive samples of the input x(n), of the

products of the output y(n) and the basis functions fj(n),

pj =< y(n)fj(n) >L, j = 1, ..., NT . (8)

3. QPPS FOR SECOND-ORDER FILTERS

Our goal is to define periodic sequences easy to generate and

able to minimize the computational cost of the LS algorithm

in (6). We consider the following constraints:

i) the derivation of the sequence is as simple as possible;

ii) each sample in the sequence is represented using only few

levels, so that the computation of the basis functions can be

done using small look-up tables;

iii) the resulting auto-correlation matrix, in general no more

diagonal as for PPSs, is as sparse as possible, so that the com-

putation and inversion of the auto-correlation matrix are not

computationally intensive.

A sequence satisfying these constraints is called here a quasi-

perfect periodic sequence (QPPS). To satisfy the first con-

straint, our choice is to resort to a combinatorial rule to gen-

erate the sequence. As far as the point ii) is concerned, the

choice of a three values (−1, 0,+1) sequence led, in our ex-

periments, to solutions affected is some cases by singularity

or bad conditioning of Rff . These effects are greatly allevi-

ated by using five values (−1,−0.5, 0,+0.5,+1) sequences.

Therefore, in the following we will refer to this choice. Fi-

nally, to satisfy the third constraint, we proceed as it follows.

Let us consider an integer M ≥ ⌈(N + 1)/2⌉. The QPPS

is defined with the following rule:

i) List all the 2M sub-sequences of length M formed with

+1,−1.

ii) Append to each sub-sequence at point i) a zero sub-

sequence of length N −M .

iii) Take the list in i) and multiply each element by −0.5,

obtaining a list of 2M sub-sequences of length M formed by

+0.5,−0.5.

iv) Append to each sub-sequence at point iii) a zero sub-

sequence of length N −M .

v) Define one period of the QPPS by concatenating all the

resulting sub-sequences at points ii) and iv).

The length of the resulting QPPS is L = 2 ·N · 2M samples.

With this sequence, the auto-correlation matrix for second-

order EMFN, Legendre and Volterra filters of memory N is

highly sparse. Indeed, with reference to second-order EMFN

filters, the following cross-products between basis functions

have zero average over a period:

sin[π
2
x(n−i)]·sin[π

2
x(n−j)] for i 6= j and i, j = 0, ..., N−1;

sin[π
2
x(n− i)] · cos[πx(n− j)] for any i, j = 0, ..., N − 1;

sin[π
2
x(n − i)] · sin[π

2
x(n − l)] sin[π

2
x(n − m)] for any

i, l,m = 0, ..., N − 1 and l 6= m;

cos[πx(n − i)] · sin[π
2
x(n − l)] sin[π

2
x(n − m)] for any

i, l,m = 0, ..., N − 1 and l 6= m;

sin[π
2
x(n−i)] sin[π

2
x(n−j)] ·sin[π

2
x(n−l)] sin[π

2
x(n−m)]

for any i, j, l,m = 0, ..., N − 1 with (i, j) 6= (l,m), j > i,
and m > l.
For any n, the above cross-products are functions of a limited

number of samples x(n− i), which belong to a sub-sequence

of at most N samples, i.e., i ∈ [0, N − 1]. By construction,

for any of these cross-products and for any sub-sequence of

N samples there is another sub-sequence that generates the

opposite value of the cross-product. The minimum value

of M that guarantees this property is M = ⌈(N + 1)/2⌉.

The only cross-products that have non-zero average are

cos[πx(n−i)] cos[πx(n−j)] for i 6= j and i, j = 0, ..., N−1.

Thus, Rff is highly sparse since only NT + N2 − N
elements are different from zero, i.e., Rff has density

(NT + N2 − N)/N2
T . The same considerations apply also

to the Legendre and Volterra filters of memory N . All the

cross-products between two different basis functions have

zero average apart from leg2[x(n − i)]leg2[x(n − j)] or

x2(n − i)x2(n − j) for i 6= j and i, j = 0, ..., N − 1.

Moreover, if the vector f(n) is formed by sorting the EMFN

or Legendre basis functions as in Table 1 or 2, respectively,

the auto-correlation matrix is block-diagonal and has the

following form

Rff = diag(A,B,C),

where A is diagonal and corresponds to the auto-correlation

of the basis functions of order 1, B is the full matrix corre-

sponding to the cross-products cos[πx(n− i)] cos[πx(n− j)]
or leg2[x(n − i)]leg2[x(n − j)] or x2(n − i)x2(n − j), and

C is a diagonal matrix corresponding to the auto-correlation
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Table 3. Characteristics of five levels QPPSs for second-order

EMFN, Legendre and Volterra filters

N NT L Density 100/NT

3 9 24 18.52 11.11

4 14 64 13.27 7.14

5 20 80 10.00 5.00

6 27 192 7.82 3.70

7 35 224 6.29 2.86

8 44 512 5.17 2.27

9 54 576 4.32 1.85

10 65 1280 3.67 1.54

11 77 1408 3.15 1.30

12 90 3072 2.74 1.11

13 104 3328 2.40 0.96

14 119 7168 2.13 0.84

15 135 7680 1.89 0.74

16 152 16384 1.70 0.66

17 170 17408 1.53 0.59

18 189 36864 1.39 0.53

19 209 38912 1.26 0.48

20 230 81920 1.15 0.43

of the remaining basis functions of order 2. This structure al-

lows the determination of Rff and its inverse with reduced

computations. Indeed, the calculation of the elements of Rff

summing to zero are avoided and the computation of R−1

ff re-

quires the inversion of only an N ×N matrix and two diago-

nal matrices. Moreover, the basis functions can be computed

by means of look-up-tables with only five entries, and thus

further alleviating the computational cost.

Table 3 gives some of the characteristics of the QPPSs

for a second-order EMFN, Legendre or Volterra filter, i.e., the

memory N , the total number of coefficients NT , the sequence

length L and the density, in percent, of the auto-correlation

matrix Rff . The last column reports, for comparison, the

density, in percent, of the auto-correlation matrix for a PPS.

4. EXPERIMENTAL RESULTS

4.1. Experiment 1.

In this experiment, we analyze the accuracy of the LS algo-

rithm in the identification of an unknown system, described

by a second-order EMFN structure, when a QPPS is used as

input signal. The figure of merit is the mean-square devia-

tion (MSD) between the coefficients of the unknown system

and those of the modeling EMFN filter. The results shown in

Figure 1 are averages over 100 independent tests, where the

coefficients of the unknown system are chosen randomly in

R1. Both the unknown system and the modeling filter have

memory N = 10. The dashed line indicates the MSD for

the coefficients identified using an infinite precision PPS, the

small circles indicate the MSD for the PPS quantized on finite

numbers of bits, and the small squares indicate the MSD for
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Fig. 1. MSD for the coefficients of the EMFN filter.

the five levels QPPS. It can be noticed that the quantized PPS

quickly degrades the performance when the number of bits

decreases, whereas the five levels QPPS obviously gives the

same performance on the whole range of quantization bits.

4.2. Experiment 2.

We consider the identification of a real nonlinear device, i.e.,

a saturated audiophile vacuum tube preamplifier Behringer

Tube Ultragain MIC100. A QPPS has been fed to the pream-

plifier and the corresponding output has been recorded with a

notebook at 8 kHz sampling frequency. The SNR is more than

50 dB. The system has a memory length lower than 20 sam-

ples, thus a QPPS for EMFN, Legendre, and Volterra filters

with memory N = 20 and period L = 81920 samples has

been used for the identification. By acting on the gain con-

trol of the preamplifier, different distortion levels can be set.

At the different settings, the preamplifier has been identified

with i) a linear filter of 20 samples memory, ii) a second or-

der Volterra filter, iii) a second-order Legendre filter, and iv)

a second-order EMFN filter all with memory of 20 samples

and 230 coefficients.

Table 4 provides for increasing distortion levels: the sec-

ond (Dist2) and third (Dist3) harmonic distortions measured

on a tone at 1 kHz and at the maximum used volume, and the

ratio in dB between the power of the residual identification

error and the power of the preamplifier output signal for the

Volterra, Legendre (Leg.), EMFN, and linear (Lin.) filters, re-

spectively. We see from Table 4 that, apart from the smallest

distortion levels, the linear filter is unable to efficiently model

the nonlinearities introduced by the amplifier and gives al-

ways worst results than the Volterra and Legendre filters. For

small nonlinearities, especially when the second order har-

monic distortions prevails, the Volterra and Legendre filters

provide the best model of the amplifier and give equivalent

representations since they are both polynomial models that

include a linear and quadratic term. In contrast, for small dis-

tortions, the EMFN filter provides poor results since it lacks

a linear term. For larger distortion levels, when the third or-

der harmonic distortion becomes significant, the Volterra and

Legendre filters are unable to cope with the third order non-
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Table 4. Identification results for the preamplifier Behringer

MIC100
Dist2 Dist3 Volterra Leg. EMFN Lin.

1.25% 0.19% -23.6 -23.6 -16.6 -23.1

2.90% 0.64% -22.8 -23.0 -16.8 -21.3

3.52% 0.84% -22.5 -22.7 -17.0 -20.4

4.46% 1.28% -21.6 -21.9 -17.3 -18.7

6.00% 2.46% -19.4 -19.7 -18.0 -16.2

6.86% 6.06% -16.0 -16.2 -18.5 -14.3

3.11% 11.32% -14.0 -14.1 -18.0 -13.2

3.41% 14.87% -13.0 -13.0 -17.4 -12.8

11.27% 17.22% -11.7 -11.7 -15.6 -11.6

linearity and give results comparable with those of the linear

filter. In these conditions the EMFN filter provides the best

results thanks to the ability of its basis functions to generate

also the higher order harmonics.

5. CONCLUSIONS

In this paper, the so-called QPPSs have been first introduced

and then applied to the identification of EMFN, Legendre

and Volterra filters. The properties of QPPSs allow their fast

generation and the efficient implementation of the LS algo-

rithm. For sake of simplicity, in this paper the discussion has

been limited to filters formed with first- and second-order ker-

nels, deferring the derivations for third-order filters to a paper

presently in preparation. Indeed, complete or simplified third-

order filters can often guarantee sufficiently good approxima-

tion performance. On the other hand, simplified structures

allow the use of QPPSs of reduced length.
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