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ABSTRACT

In this paper we propose a new design method for oversam-

pled perfect reconstruction (PR) Discrete Fourier Transform

(DFT) transmultiplexers (TMUXs). The resulting multicar-

rier modulation (MCM) systems are characterized by their

minimal dimension, i.e., they involve a minimal number of

Givens rotations. Our design method is applicable for sys-

tem parameters that have never been reached before and also

provides improved results in terms of out-of-band energy.

Index Terms— DFT; FMT; OFDM; Oversampled; Trans-

multiplexer.

1. INTRODUCTION

A new generation of mobile communication is now actively

being prepared. This fifth generation (5G) will impact all

communication layers from the application layer to the physi-

cal one. This strong trend is illustrated by the research on new

waveforms which is actively carried out in several European

projects [1], [2], [3]. If many communication standards, in-

cluding 3GPP LTE [4] for the 4G, have adopted the Orthogo-

nal Frequency Division Multiplexing (OFDM) modulation in

the past, currently various MCM alternatives are being pro-

posed. The main idea is to preserve the great advantages of

OFDM, i.e., fast and simple implementation algorithms and

robustness with respect to frequency selectivity, while avoid-

ing its main drawback which is its poor sin(x)/x frequency

behavior. This feature is indeed annoying in the presence of

any type of frequency impairment and could definitively pre-

vent the use of OFDM in asynchronous application scenarios

due to the bad frequency containment of each user/service.

In this paper, we focus on an alternative known as over-

sampled OFDM [5] or Filtered MultiTone (FMT) [6]. As it

uses the duality with exponentially modulated filter banks, it

is also named Discrete Fourier Transform (DFT) transmul-

tiplexer (TMUX). Being an oversampled system, the DFT

TMUX can provide in the meantime a PR property and a

frequency spectrum which is far better than the OFDM one.

However, the design of such a PR TMUX is difficult if one

wants to get a modulation system with

• A high spectral efficiency (SE), i.e. an oversampling

factor (OSF) close to 1, e.g., 33/32, otherwise said a

SE equivalent to the one of an OFDM system having a

Cyclic Prefix (CP) equal to 1/32. Then, the underlaying

problem is that the number of orthogonality constraints

grows when the OSF decreases;

• A high number of subcarriers, knowing this number can

attain the maximum size of the (Inverse) Fast Fourier

Transform ((I)FFT) used in OFDM systems, e.g., 2048

for 3GPP [4] and 32768 for DVB-NGH [7]. Then, as

the number of taps of the prototype filter is proportional

to the number of subcarriers, the resulting optimization

problem may become huge.

At the exception of TMUX systems equipped with pro-

totype filters having, for given OSF and number of carriers,

the shortest possible length [8], the state of the art does not

provide solutions fully satisfying the two above objectives. In

the early works the authors have exhibited design examples

going up first to 32 and then 128 carriers with OSF going

down from 3/2 to 5/4 in [5] and [9], respectively. The con-

cept of dimension of a solution is introduced at first in [10]

where the authors also provide designs for TMUX systems

with 1024 carriers and an OSF equal to 5/4. This result is

also made possible by the use of the compact representation

method [11]. Then, in [12], for a large set of DFT TMUX

parameters, a classification of the corresponding algebraic so-

lutions is provided according to their dimension. It appeared

that minimal dimension systems where appropriate to get pro-

totype filters with low out-of band energy. A recent publica-

tion [13] has shown that using a more conventional approach,

i.e., a Singular Value Decomposition (SVD) or a Cosine-Sine

Decomposition (CSD) of the polyphase matrix it was possi-

ble to design a 128-subbandDFT TMUX system with an OSF

equal to 33/32. With our method, we can go up to 32768

subbands while providing in the meantime a better frequency

selectivity.

Our paper is organized as follows. Section 2 presents the

PR DFT TMUX. In Section 3, we define the set of matrices

providing PR for various OSFs and prototype filter lengths. In
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Section 4, we provide our notations and definitions leading to

a minimal dimension PR Givens set together with the key the-

orem allowing us to design minimal dimension DFT TMUX.

In Section 5, we present some design examples that can be

used for practical TMUXs. Section 6 gives our conclusions.

2. THE PR DFT TRANSMULTIPLEXER

Let us denote by M and N two integers such that M ≤ N .

The TMUX scheme is depicted in Fig. 1. Its expansion and

decimation factors are equal to N . Fm(z) and Hm(z), 0 ≤
m ≤ M − 1 denote the filters of the synthesis (SFB) and

analysis filter bank (AFB), respectively. In a general setting,

they correspond to the z-transform of their complex impulse

response fm[k] and hm[k], respectively

Fm(z) =
∑

k∈Z

fm[k]z−k, Hm(z) =
∑

k∈Z

hm[k]z−k. (1)

F0(z)

FM−1(z)

H0(z)

HM−1(z)

x0[n]

xM−1[n]

x̂0[n]

x̂M−1[n]

s[n]

N

NN

N

Fig. 1. Transmutiplexer with M subcarriers and expan-

sion/decimation factor equal to N .

This TMUX with OSF equal to ρ = N
M is said to be PR if

for any discrete-time input symbols xm[n] the output symbols
x̂m[n] are such that x̂m[n] = xm[n], n ∈ Z, 0 ≤ m ≤M−1
implying that, for 0 ≤ m,m′ ≤M − 1, n, k ∈ Z,

∑

l∈Z

fm′ [l− kN ]hm[nN − l] = δm,m′δn,k, (2)

where δi,j = 1 if i = j and 0 otherwise.

In the following, we only focus on orthogonal TMUX,

i.e., the AFB corresponds to a set of filters that are matched

to the ones of the SFB. Otherwise said the coefficients of the

Fm(z) andHm(z) filters are linked together by the following
equation hm[n] = fm[−n], 0 ≤ m ≤M − 1, n ∈ Z.

The oversampled OFDM (N > M ) system, we are now

considering, is a TMUX with exponential modulation, mean-

ing that the Fm(z) filters are given by

Fm(z) = P (ωm
Mz), 0 ≤ m ≤M − 1, (3)

where ωM denotes theM th root of unity ωM = e−2jπ/M and

P (z) =
∑

n∈Z
p[n]z−n is a filter, called the prototype filter,

with real-valued coefficients, p[n], n ∈ Z.

After some computations, we arrive at a PR condition al-

ready reported in [9, (10)]

∑

k∈Z

p[s+kM ]p[s+kM+nN ]=
1

M
δn,0, 0 ≤ s < M,n ∈ Z.

(4)

Then, setting ∆ = gcd(M,N) and definingM0 and N0

such that M = ∆M0, N = ∆N0, we get the type 1 ∆-

polyphase decomposition of P (z) as follows

P (z) =

∆−1
∑

i=0

Pi(z
∆) z−i. (5)

with Pi(z) the i-th polyphase component. Doing so we can
provide a simple reformulation of the decomposition theorem

initially proved in [10].

Theorem 2.1. P (z) is PR for the parameters M and N if

and only if the Pi(z) are PR for the parametersM0 et N0 for

every i, 0 ≤ i ≤ ∆− 1.

3. THE S(M0, N0, L0) SET

Definition 3.1. Let N0 ≥ 2, M0 > 0 with M0 ≤ N0, and

A(X) a N0 × M0 matrix for which entries are polynomial

in X with real valued coefficients. Such a matrix A(X) is

paraunitary if

A(1/X)T A(X) = IM0
, (6)

where IM0
denotes the unit matrix of dimensionM0 and (.)

T

is the transpose operator.

If the entries of a paraunitary matrix A(X) are constant
then the matrix A = A(X) is constant : it is aN0 ×M0 or-

thogonal matrix, such thatAT
A = IM0

.

In the rest of this paper the row and column indexes of

matrices will be denoted starting with the index 0 and matri-

ces appear in bold characters while set of matrices are written

with standard characters.

Let the functions a(r, c), p(r, c), q(r, c) defined for (r, c) ∈
[0, . . . , N0 − 1]× [0, . . . ,M0 − 1] be defined as in [12] by

a(r, c) = r + p(r, c)N0 = c+ q(r, c)M0, (7)

with 0≤ p(r, c)<M0, 0≤ q(r, c)<N0, 0≤ a(r, c)<M0N0.

It is proven in [12] that the function ε(r, c), defined by

ε(r, c) = α(r) − (q(0, c) + q(r, 0)− q(r, c))/N0, (8)

where a/b denotes the integer division and where α(r) = 0 if
r is divisible byM0 and 1 elsewhere, has values in {0, 1}.

For M0, N0 relatively prime numbers, with M0 < N0,

and P (z) a prototype filter for parametersM0 and N0, let us

define the N0 × M0 matrix U(X), called the U -matrix of

P (z), by
[U(X)]r,c = Xε(r,c)Va(r,c)(X), (9)

where the Va(z) are the M0N0-polyphase components of

P (z).
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Theorem 3.2. [12, Theorem II.2] P (z) has the PR property

if and only if its U -matrixU(X) is paraunitary.

For L0 ≥ N0, we denote by S(M0, N0, L0) the set of all
U -matrices of PR prototype filters for parametersM0, N0 and

length L0.

4. A MINIMAL DIMENSION PR GIVENS SET

4.1. Notations and definitions

Definition 4.1. . Let s : [0, 1, . . . ,M0−1] → [0, 1, . . . , N0−
1] be an injective application. We denote by E(s) the N0 ×
M0 constant orthogonal matrix such that Es(c),c = 1, 0 ≤
c ≤ M0 − 1 and Er,c = 0, otherwise. Such a matrix is said

to be an elementary paraunitary matrix.

E(s) denotes the one element set {E(s)}.
In the following s0 denotes the application defined by

s0(c) = c, 0 ≤ c ≤M0 − 1.

Definition 4.2. LetN0 ≥ 2 and i, j, 0 ≤ i, j ≤ N0−1; i 6= j
and θ ∈ R. The square orthogonal matrix Ri,j(θ) of di-

mension N0 defined by [Ri,j(θ)]i,i = [Ri,j(θ)]j,j = cos θ,
[Ri,j(θ)]j,i = −[Ri,j(θ)]i,j = sin θ, [Ri,j(θ)]r,r = 1, r 6=
i, r 6= j and [Ri,j(θ)]r,c = 0 otherwise, is called an elemen-
tary rotation matrix, or a Givens matrix, of indexes i, j.

Ri,j denotes the set {Ri,j(θ), θ ∈ R}.

Definition 4.3. Let N0 ≥ 2 and 0 ≤ r ≤ N0 − 1. The pa-
raunitary diagonal square matrix Zr of dimension N0, such

that [Zr]r,r = X and [Zr]k,k = 1 if k 6= r is called the shift

matrix of row r.
Zr denotes the one element set {Zr}.

IfA andB designate two sets of matrices with compatible

dimensions, we denote byAB the set of matrix productsAB

whenA ∈ A andB ∈ B.
Let us now give the fundamental following definition.

Definition 4.4. LetM0 and N0 be two integers with N0 ≥ 2
and 1 ≤ M0 ≤ N0. A Givens set of parametersM0, N0 is a

product of shape T1T2 . . . TnT
E whereE is the set composed

of an elementary matrix and where for, each k, 1 ≤ k ≤ nT ,

Tk is a set of rotations Ri,j or a set Zr.

The matrices of a Givens set are obviously paraunitary

matrices of dimensionsN0 ×M0.

If there exist nR sets of rotations in the sequence {Ti, 1 ≤
i ≤ nT } of a Givens set G, let i1 < i2 < · · · < inR denote

their indexes in this sequence. If θl, 1 ≤ l ≤ nR are nR given

real numbers, then we can choose the rotation of angle θl in
the set of rotations Til for 1 ≤ l ≤ nR.

Thus, we get an application φG from R
nR to G, which is

called the parametric representation of G.

In another hand, the setM(N0,M0)
(d) of N0 ×M0 ma-

trices the entries of which are polynomial in X of degree less

or equal to d, d ≥ 0 can be identified to R
(d+1)M0N0 as fol-

lows : the Ek,r,c matrices with 0 ≤ k ≤ d, 0 ≤ r ≤ N0 − 1,
0 ≤ c ≤ M0 − 1, defined by [Ek,r,c]r,c = Xk and 0 other-

wise, constitute a basis of this set of matrices and the linear

application such that ψ(Ek,r,c) = en with n = kM0N0 +
mM0 + c, where en, 0 ≤ n < (d + 1)M0N0 is the canon-

ical basis R(d+1)M0N0 , is a bijection from M(N0,M0)
(d) to

R
(d+1)M0N0 . Starting from now, we will identify a matrixA

ofM(N0,M0)
(d) and its imageψ(A) inR(d+1)M0N0 and we

will also consider than ψ◦φG is the parametric representation

of G.

Theorem 4.5. For a Givens set G containing nR rotations,

the rank of the Jacobian matrix of its parametric represen-

tation φG reaches its maximum value except on a set of null

measure in RnR . This maximum value is called the dimension

of G.

If the dimension of G is equal to nR then, for any point θ
of RnR where the rank of the Jacobian matrix is exactly equal

to nR, there exists a neighborhood V of θ where the rank is
still equal to nR and the restriction of φG of V is injective

beingmore precisely a diffeomorphismof V onto φG(V ). We

will say that G is a locally injective Givens set.

The use of a compact representation [11] assumes that for

each ∆-polyphase component (PC) the behavior of the d an-
gular parameters is very regular which has been checked for

critically decimated [11] and oversampled systems [10, 12].

Otherwise said, for the PC of index i and a number of d ro-
tations, corresponding to the solution dimension, the angle

behavior may for instance be accurately represented by the

following smoothing function [10]

θ(i)p =

K−1
∑

k=0

xp,k

(

2i+ 1

2∆

)k

, 0≤ i<∆, 0≤p≤d−1. (10)

where the xp,k designate the coefficients of this expansion.

Then, instead of having d∆ parameters to optimize the com-

pact representation only involves dK variables. This can ne

interesting as soon asK < ∆. Most often a value ofK equal

to 5 or 6 can be enough and the number of subcarriers can

attain thousands, so, in general,K << ∆.

4.2. The basic theorem

When the length L0 of the solution is a multiple ofN0, L0 =
mN0, and when the set SM0,M0+1,L0

of all solutions has been

explicitly computed, the solution of minimal dimension is of

dimension m and can be written in a relatively simple form.

In the following theorem, we show that this simple form gives

rise to a solution, i.e., for each value of L0 = mN0, we get

a set of paraunitary matrices of size N0 ×M0 providing PR

prototype filters for the parameters M0, N0 = M0 + 1 and

with length L0.
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Theorem 4.6. LetM0 ≥ 2 andN0 =M0+1. For all k ≥ 0,
we define the sets of matrices Tk by

Tk =

{

ZM0
R0,M0

if k > 0 and k mod M0 = 0,
Rk modM0,M0

otherwise,
(11)

Let us define the Givens set SM0,L0
for L0 = mN0 with

m ≥ 1 by

SM0,L0
=

m−1
∏

k=0

Tk E[s0]. (12)

Then SM0,L0
⊂ SM0,M0+1,L0

and SM0,L0
has dimensionm.

Conjecture 4.7. For M0 ≥ 2, N0 = M0 + 1 and L0 =
mN0 with m ≥ 1, SM0,L0

is a minimal dimension solution

of SM0,M0+1,L0
in its decomposition as an union of locally

injective Givens sets, each being maximal for the inclusion

and not included in the union of the others.

Each set Tk depends on an angle and we denote T k(θk)
the matrix obtained when giving the value of θk to this angle.
Then, we set, for L0 = mN0,

SM0,L0
(θ0, . . . , θm−1) =

m−1
∏

k=0

T k(θk) E(s0). (13)

Since a rotation matrix with a null angle is the identity

matrix of dimensionN0 and as ZM0
E(s0) = E(s0), we get

SM0,L0
(θ0, . . . , θm−1) = SM0,L0+N0

(θ0, . . . , θm−1, 0), (14)

so that SM0,L0
⊂ SM0,L0+N0

.

Theorem 4.6 is a strict generalization of [12, Theorem

VI.4]. Its main interest lies on the fact that the optimization

for a given criterion of a PR prototypeRP filter of length∆L0,

withL0 = mN0, built using∆∆-polyphase components cor-

responding to U -matrices SM0,L0
(θ

(i)
0 , θ

(i)
1 , . . . , θ

(i)
m−1), i =

0, . . . ,∆− 1 can be done form > 1 using as initial point the

optimum obtained for m − 1 and initial angles θ
(i)
m−1, i =

0, . . . ,∆− 1 being set to zero.

Then, using the compact representation method, we do

not need to add ∆ parameters at each step but only K , with

K the degree of the compact representation. Furthermore, as

the optimization is carried out step by step, it appears that for

high values of M0, a degree K = 2 is enough. Note also

that compared to [10, 12], where the prototype filter length is

constrained to be equal to m∆N0M , we can now explore a

far wider set of lengths.

In the next section, our design method is used to get proto-

type filters with minimal out-of-band energy. It is also shown

that it can produce prototype filters up to ρ = 33/32 for a

32768-subband PR DFT TMUX, i.e., something comparable

to what is proposed in DVB-NGH [7] for OFDM.

5. DESIGN RESULTS

As in [12] we noticed that minimal dimension solutions could

provide good attenuation properties, we focus here on the

minimization of the out-of-band energy criterion. The objec-

tive function to minimize then writes as

E =
J(fc)

J(0)
with J(x) =

∫ 1/2

x

|P (ej2πν |2 dν. (15)

with fc = 1
2M . Then the goal is to find the xp,k variables of

the compact representation minimizing E.
For the first targeted example, the parameters are as fol-

lows: M0 = 32, N0 = 33, L0 = 128N0,∆ = 210 thus lead-
ing to a prototype filter of length L = 33× 217. According to
theorem 2.1, the angular representation corresponds to ∆ PR

polyphase components described by an element belonging to

S32,L0
with L0 = 128N0 depending on 128 angles, i.e., a

total of 128∆ = 217 angles.
Setting K = 2, the resulting optimization problem in-

volves Kd = 2 × 128 independent parameters which is too
much to get a satisfactory result using a global optimization

software.

Using (14), the optimization can be conducted with m
increasing from 1 to 128, using as a starting point, for any

m > 1, the optimal filter obtained for m − 1. Only K pa-

rameters need to be added at each step, with K = 2 for high
values ofM0.

In this way, we obtain the prototype filter displayed in

Figure 2. Its out-of-band energy is equal to 2.5214 × 10−5,

i.e., -45.97 dB. Only the first 106 filter’s coefficients are rep-
resented in the left part of Figure 2.

Naturally our method also works for other values ofM0.

E.g., forM0 = 8, N0 = 9, L0 = mN0 with 1 ≤ m ≤ 32 and
∆ = 8, we get the best out-of-band energy curve depicted in
Figure 3.
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Fig. 3. Variations (in dB) for 1 ≤ m ≤ 32 of the best out-of-
band energy for PR prototype filter optimized setting: M0 =
8, N0 = 9, L0 = mN0 and∆ = 8.

For m = 24, we obtain a filter of length L = mN0∆ =
24 × 9 × 8 = 1728 having a out-of-band energy equal to
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Fig. 2. Prototype PR filter with parametersM0 = 32, N0 = 33, L0 = 128N0,∆ = 210 and out-of-band energy -45.97 dB.

1.0736×10−4, i.e., -39.69 dB. It corresponds to the red square

in Figure 3. The number of angles for its angular representa-

tion is equal to ∆m = 192 while its optimization has been
carried out with the 2m = 48 parameters of a compact repre-
sentation of degreeK = 2.

Let us compare with the result provided by Rahimi and

Champagne in [13] for a PR prototype filter having similar pa-

rameters. According to their own parametric representation,

the number of parameters allowing to describe a paraunitary

matrix corresponding to the prototype filter is equal to 576 or

448 [13, Table 1]. Their result corresponds to the green square

in Figure 3. This clearly shows that our method requires a

smaller number of parameters, which is of interest for opti-

mization but also for the implementation point of view, and

furthermore we are able to provide a design result which is

approximately 13.5 dB better for the out-of-band energy.

6. CONCLUSION

We have presented a design method for oversampled PR DFT

TMUX. We considered a class of PR solutions leading to

MCM systems of minimal dimension, i.e. involving a min-

imum number of Givens rotations. We have theoretically

proved that the angles can be derived step by step when con-

sidering increasing lengths of the prototype filters. This leads

to an efficient design algorithm in which the filter’s coeffi-

cients can be iteratively computed. For a minimization of the

out-of-band energy criterion, we can provide nearly optimal

designs without practically no length limitation and for very

high spectral efficiency, i.e., with oversampling factors very

close to 1 (33/32).
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