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Abstract—This paper introduces a causality constrained se-
quential matrix diagonalisation (SMD) algorithm, which gener-
ates a causal paraunitary transformation that approximately di-
agonalises and spectrally majorises a parahermitian matrix, and
can be used to determine a polynomial eigenvalue decomposition.
This algorithm builds on a multiple shift technique which speeds
up diagonalisation per iteration step based on a particular search
space, which is constrained to permit a maximum number of
causal time shifts. The results presented in this paper show the
performance in comparison to existing algorithms, in particular
an unconstrained multiple shift SMD algorithm, from which our
proposed method derives.

I. INTRODUCTION

Polynomial eigenvalue decomposition (PEVD) of paraher-

mitian matrices extends the utility of the EVD for many

narrowband problems to the broadband case, such as for

broadband sensor arrays. When calculating covariance matri-

ces for narrowband arrays, the consideration of simple phase

shifts suffices; however in the broadband case these must

be replaced with actual time delays, leading to covariance

matrices that contain polynomials rather than scalar values.

Since the narrowband EVD cannot be applied to such matrices,

the second order sequential best rotation algorithm (SBR2) [1]

has approximated a PEVD, and has found a multitude of appli-

cations including broadband direction of arrival estimation [2],

precoding and equalisation for broadband MIMO systems [3],

and filterbank based channel coding [4], [5]. The SBR2 algo-

rithm is a generalisation of the classical Jacobi algorithm [6]

extended to parahermitian polynomial matrices [1].

The idea of Hermitian matrices can be extended to poly-

nomial matrices however in addition to the conjugate sym-

metry across the diagonal there is also a time reversal i.e.

R(z) = R
H(z−1) where the parahermitian operator R̃(z) can

be used to signify the Hermitian transpose and time reversal

in R
H(z−1). A paraunitary matrix is simply a polynomial

matrix whose product with its parahermitian transpose yields

the identity, H(z)H̃(z) = H̃(z)H(z) = I [7]. From [1] the

PEVD of a parahermitian matrix is generalised to

R(z) ≈ H(z)D(z)H̃(z) , (1)

where D(z) is a diagonal polynomial matrix whose diagonals

correspond to the approximate polynomial eigenvalues and the

rows of the paraunitary H(z) are the approximate polynomial

eigenvectors of the parahermitian matrix R(z).

Iterative PEVD algorithms, such as SBR2 [1] or approxi-

mate EVD (AEVD) [8], aim to construct the paraunitary ma-

trix, H(z), through the combination of N simpler paraunitary

matrices,

H(z) = GN (z) . . .G2(z)G1(z) , (2)

each of which transfers energy from the off-diagonal elements

of the parahermitian matrix onto the diagonal. The more en-

ergy each of the simpler paraunitary matrices, Gn(z), transfer

to the diagonal, the fewer the number of iterations required to

reach a satisfactory paraunitary matrix H(z).
The sequential matrix diagonalisation algorithm, (SMD)

[9], uses a similar approach to construct H(z) as SBR2 but

differences in the techniques used mean each Gn(z) for SMD

transfers more energy per iteration. The algorithm proposed

in this paper builds on a recently introduced multiple shift

SMD version [10]; however the algorithm has been modified to

ensure the paraunitary matrix produced is causal (i.e. consists

of only delays and no advances) but still transfers more energy

per iteration than both SBR2 and SMD.

This paper is arranged as follows: Sec. II reviews existing

iterative PEVD algorithms, Sec. III introduces the proposed

algorithm, results and conclusions are given in Sec. IV and

Sec. V, respectively.

II. EXISTING APPROXIMATE PEVD ALGORITHMS

A. Second Order Sequential Best Rotation Algorithm

The SBR2 algorithm [1] iteratively calculates an approx-

imation to the PEVD of a parahermitian matrix. At every

iteration, SBR2 identifies the largest off-diagonal element, and,

through a series of delay and rotation operations, will eliminate

this element and transfer its energy onto the diagonal. The

first step of the SBR2 algorithm during the ith iteration is to

find the maximum off-diagonal element in the parahermitian

matrix and shift it onto the zerolag. A set of modified column

vectors, ŝ
(i)
k [τ ] ∈ C

M−1, which contain all but the on-diagonal

elements, are used to find the column k(i) and lag τ (i),

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖∞ , (3)

containing the maximum off-diagonal element.

Given the lag and column indices τ (i) and k(i), the k(i)th
column and its parahermitian — the k(i)th row containing the



complex conjugate of the maximum off-diagonal element —

are both shifted in opposite directions by τ (i) lags using

S
(i)′(z) = Λ̃

(i)
(z)S(i−1)(z)Λ(i)(z) , i = 1 . . . I , (4)

where

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)
−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} . (5)

The energy of the maximum element, now on the zero lag,

is transferred onto the diagonal using the Jacobi rotation, Q(i),

S
(i)(z) = Q(i)H

S
(i)′(z)Q(i) . (6)

Due to their sparseness, the Jacobi rotation matrices Q(i) and

Q(i)H only affect two rows and columns in the parahermitian

matrix. Spectral majorisation of the paraunitary matrix – the

strict ordering of diagonal entries at all frequencies – can

be encouraged by ordering the scalar entries of the zero lag

diagonal of the parahermitian matrix after each iteration.

The SBR2 algorithm stops when either a fixed number

of iterations, I , have passed or the maximum off-diagonal

element falls below a given threshold. The decomposition

computed by SBR2 can be performed by a single paraunitary

matrix, H(z),

H(z) =
I∏

i=1

Q(i)Λ(i)(z) , (7)

which consists of the product of the I rotation and delay

matrices.

B. Sequential Matrix Diagonalisation Algorithm

Rather than just eliminating the maximum element as in an

SBR2 iteration, the SMD algorithm clears the entire row and

column that is shifted onto the zero lag matrix. Therefore, the

simple Jacobi rotation used in the SBR2 algorithm is replaced

by a full EVD of the zero lag matrix which transfers all of its

off-diagonal energy onto the diagonal.

The SMD algorithm is initialised by calculating the full

EVD of the zero lag matrix, S(0)[0], which is then applied

to all lags of the parahermitian matrix; this clears the energy

from all off-diagonal elements in the zero lag onto its diagonal.

The ith iteration of the SMD algorithm, like SBR2, starts by

finding the column to be brought onto the zero lag. For SMD,

the L∞-norm in (3) is replaced by an L2-norm to find the

column that contains the maximum off-diagonal energy. Based

on the identified lag and column indices, τ (i) and k(i), (4) is

used to bring the respective row and column pair onto the zero

lag.

The next step in the ith iteration of SMD is equivalent to

(6), but replaces the simple SBR2 Jacobi rotation Q(i) with

a non-sparse full EVD of the zero lag matrix, S(i)′[0]. The

drawback of using the full EVD is that it is more costly to

apply than the simple Jacobi rotation; however rather than

only transferring energy from a single element, the full EVD

transfers all off-diagonal energy in the zero lag matrix onto

its diagonal. The application of an ordered EVD encourages

spectral majorisation akin to the SBR2 algorithm. Similar

stopping criteria to SBR2 are used but modified slightly to

reflect the column norm applied for the parameter search.

The disadvantages of the SMD algorithm with respect to

SBR2 are the computational cost of calculating the column

norms for the search step, applying a full EVD to the zero

lag matrix, and thereafter performing a multiplication with

unitary modal matrices at all lags in the parahermitian matrix

rather than a simple Jacobi rotation of two rows and columns.

The major advantage of the SMD algorithm is its ability

to transfer more energy onto the diagonal at each iteration.

Transferring more energy gives SMD the ability to diagonalise

a parahermitian matrix in far fewer iterations than the SBR2

algorithm.

A maximum element SMD algorithm, ME-SMD, is a lower

computational cost version of the SMD algorithm. Rather than

using the column norm search described above, ME-SMD uses

the maximum element search akin to SBR2 to decide which

column should be shifted onto the zero lag matrix.

C. Multiple Shift Maximum Element SMD Algorithm

The distinguishing feature of the MSME-SMD algo-

rithm [10] is in the search and shift operations. In every

iteration, MSME-SMD finds and shifts (M − 1) maximum

elements onto the zero lag for any M × M parahermitian

matrix. MSME-SMD uses the initialisation step of the SMD

algorithm, calculating the full EVD of the zero lag which

is applied to all lags. The ith iteration then starts with the

same maximum element search as SBR2 (3) followed by the

delay step to bring the element identified onto the zero lag.

Whereas SBR2 and SMD immediately diagonalise the zero

lag, in MSME-SMD a set of reduced search spaces, similar to

those described in Sec. III, are used to bring a further (M−2)
elements onto the zero lag. Once the (M −1) elements are on

the zero lag, MSME-SMD then follows the approach of the

SMD algorithm where a full EVD of the zero lag is calculated

and applied to all lags in the parahermitian matrix.

The major advantage of the MSME-SMD is that during each

iteration it shifts more energy than both the SBR2 and SMD

onto the diagonal and is able to diagonalise a parahermitian

matrix in yet fewer iterations. Compared to the SMD algorithm

the search and EVD steps are more costly, although the cost

in applying the EVD to the zero lag matrix and subsequently

the modal matrix to all lags of the parahermitian matrix is the

same.

III. CAUSALITY CONSTRAINED MSME-SMD

ALGORITHM

A. Causality Considerations

The causality of the time shift step in the original SBR2 [1]

is not guaranteed, as τ (i) in (5) can be positive or negative.

Note however, that if the maximum element is identified in

column k(i) and row m(i) at lag τ (i), the parahermitian nature

of S
(i−1)(z) = S̃

(i−1)
(z) implies that a corresponding value

sits in column m(i) and row k(i) at lag −τ (i). Therefore, the



same maximum element pair shifted by (5) can also be brought

onto the zero lag matrix by

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

m(i)
−1

zτ
(i)

1 . . . 1
︸ ︷︷ ︸

M−m(i)

} . (8)

This alternative can be invoked to pick a causal operation from

either (5) or (8) at the ith iteration, such that the overall parau-

nitary matrix in (7) consist of only causal elements. The two

operations, although shifting the same two target elements, will

however result in different parahermitian matrices S
(i)′(z).

However note that this approach is not an option with the

SMD algorithm.

B. Idea

In the MSME-SMD algorithm mentioned in Sec. II-C

additional energy compared to the standard SMD is transferred

at each iteration by shifting more columns onto the zero lag

matrix, whereby the search space in which subsequent column

and row shifts are identified plays a crucial role, as will be

outlined below. The causality discussed in Sec. III-A will have

an impact not just in terms of the causality property of the

extracted paraunitary matrix, but also its growth in order with

every iteration. By restricting the search space in (3) to positive

lags, we propose below a causal multiple shift maximum

element SMD (C-MSME-SMD) algorithm and explore some

of its properties.

C. Algorithm

The initial step of the C-MSME-SMD algorithm is identical

to that of other SMD algorithms, whereby the zero lag matrix

is fully diagonalised by an EVD, whose modal matrix is

then applied to all lags of the parahermitian matrix. At each

iteration, the algorithm shifts (M − 1) maximum elements

onto the zero lag matrix ensuring that the paraunitary matrix

generated is kept causal. C-MSME-SMD then, like the other

SMD algorithms, proceeds to carry out a full EVD of the zero

lag matrix to complete the iteration.

The search strategy for the C-MSME-SMD algorithm is

based on the standard MSME-SMD search [10] with some

modifications that lead to a causal paraunitary matrix. To en-

sure causality in the paraunitary matrix the search is restricted

to the positive lag halfspace of the parahermitian matrix so

that any elements found are delayed onto the zero lag matrix.

The first element in the ith iteration is found using a

maximum element search, similar to (3) but it is restricted

to τ ≥ 0 for the parahermitian matrix. Once the first element,

a, and its conjugate, a∗, from the rear half of the parahermitian

matrix have been brought onto the zero lag matrix, for easier

understanding of the search strategy we permute the two

maxima into the upper left 2× 2 submatrix, a zero lag matrix

similar to Fig. 1(a) is obtained.

Continuing from Fig. 1(a), the search space for the second

element — highlighted in Fig. 1(b) — is selected to ensure

that the previous two elements are not affected. To ensure the

extraction of ultimately (M−1) shifts, the complex conjugate

of the next element has to share a row with a previously
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Fig. 1. C-MSME-SMD search strategy for a 5 × 5 matrix showing a) the
initial step after permutations, the reduced search spaces, permutations and
choices for b) the second, c) the third, and d) the fourth maximum chosen.

identified maximum. In the mth step, the search space ensures

that only one row is removed from the search space in step

(m+1), maximising the number of shifts to (M−1). Choosing

element b in Fig. 1(b), its complex conjugate b∗ will share

row 1 with the first element and only the third row will be

removed from the second search space shown in Fig. 1(c)

once appropriate permutations are applied. The same search

approach is used to find the 3rd element, c, in Fig. 1(c) and

4th element, d, in Fig. 1(d). By only ensuring that previous

elements are not affected then this could potentially remove

two rows per selection. In the 5 × 5 case this would only

guarantee three or in general (M/2) maximum elements per

iteration rather than the 4 or (M − 1) that we can achieve.

The shift and permutation operations used in the search step

can be combined into the delay matrix,

Λ(i)(z) = diag{1 z−τ (i,1)

. . . z−τ (i,M−1)

} P(i) (9)

which is the product of the individual delays and permutations

used in Fig. 1. The lag values for each of the delays in Fig. 1

are used to generate the delays τ (i,m) ≥ 0, m = 1 . . . (M−1).
The matrix P(i) contains the various permutations used to

relocate the elements at each of the (M − 1) steps in the

search.

When the (M−1) maximum elements are all on the zerolag

slice, a full ordered EVD of the zero lag matrix, S
(i)′[0],

is calculated and its modal matrix applied to all lags in the

parahermitian matrix. Convergence of the non-causal MSME-

SMD algorithm has already been proven [10]. The proof also

holds for this causality constrained C-MSME-SMD algorithm.

The delay matrix Λ(i)(z) as defined in (9) is also applied

in the MSME-SMD algorithm, but without the restriction to

τ (i) ≥ 0. Therefore, the order of Λ(i)(z) in the MSME-

SMD could in the worst case be twice as large as in the

C-MSME-SMD case, leading to a faster growth in the order

of the paraunitary matrix with each iteration. As a drawback,
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the search space of C-MSME-SMD is only half the size of

MSME-SMD, leading to potentially slower diagonalisation.

Therefore, the algorithm is likely to offer a trade-off between

the diagonalisation performance and the growth in polynomial

order compared to the MSME-SMD version.

IV. RESULTS

To compare the convergence of the different PEVD al-

gorithms, the diagonalisation measure of the parahermitian

matrix at the ith iteration is calculated as

E(i)
norm =

∑

τ

∑M

k=1 ‖ŝ
(i)
k [τ ]‖22

∑

τ ‖R[τ ]‖2F
. (10)

In (10) the numerator represents the off-diagonal energy, and

the denominator is the total energy in the parahermitian matrix,

which is invariant under paraunitary operations. Results are

averaged over an ensemble of 1000 different random 5 × 5
parahermitian matrices of order 11.

The convergence curves of the SBR2, SMD, MSME-SMD

and C-MSME-SMD algorithms in terms of the remaining

normalised off-diagonal energy according to (10) are shown in

Fig. 2 for comparison. Despite the causality constraint, Fig. 2

shows that C-MSME-SMD converges at an almost identical

rate to the non-causal MSME-SMD, both of which converge

significantly faster than SMD and SBR2.

The cost to implement a filter bank based on the paraunitary

matrix produced by a PEVD algorithm is proportional to its

order. The truncation method described in [1] is used to trim

any small valued elements at the ends of the paraunitary

matrix. Using the same ensemble approach mentioned above,

Fig. 3 compares the diagonalisation measure versus the im-

plementation cost (filter length) for the paraunitary matrices

produced by the various PEVD algorithms.

In Fig. 3, both the causal, C-MSME-SMD, and non-causal

MSME-SMD algorithms demonstrate very similar implemen-

tation costs despite the added constraint of producing a causal
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Fig. 3. Mean ensemble diagonalisation measure vs. mean paraunitary filter
bank order for SBR2, SMD, MSME-SMD, and C-MSME-SMD.

paraunitary matrix. Compared with the other causal imple-

mentation, SBR2, the major difference is the level of diago-

nalisation that is achieved. Also C-MSME-SMD outperforms

SBR2 in terms of cost for most levels of diagonalisation. The

standard SMD algorithm performs best for diagonalisations

up to 25 dB w.r.t. the metric in (10), providing paraunitary

filter banks with the lowest order. For higher levels of diag-

onalisation, at least over the number of iterations for which

simulations have been run, the MSME-SMD and C-MSME-

SMD are the only algorithms that can a provide the required

level of performance, with minimal penalty for the causality

constraint.

The power spectral densities extracted from the diagonals of

the CSD matrix are shown in Figs. 4- 7. As can be clearly seen

in Figs. 6 and 7 both of the multiple shift algorithms achieve

the best spectral majorisation (i.e. the ordering of the PSDs

at all frequencies) after a limited number of 100 iterations.

Comparing the causal C-MSME-SMD and non-causal MSME-

SMD algorithms, we have found little difference between both

algorithms in terms of achieved spectral majorisation over a

large number of simulations.

V. CONCLUSION

This paper has presented a causally constrained multiple

shift maximum element SMD algorithm for the approximate

EVD of a parahermitian matrix. The proposed algorithm is

influenced by its non-causal predecessor, the MSME-SMD

algorithm, which also brings a total of (M − 1) columns onto

the zero lag matrix per iteration. The causality constraint is

achieved by limiting the maximum element searches to select

portions in the positive lag halfspace of the parahermitian

matrix, thus ensuring all elements found have to be delayed

rather than advanced onto the zero lag matrix. The results

presented here show that the C-MSME-SMD algorithm can

achieve similar levels of performance to the unconstrained

MSME-SMD algorithm, for the same computational expense,
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Fig. 5. PSDs S
(100)
m,m (ejΩ) for SMD [9] demonstrating approximate spectral

majorisation.
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Fig. 6. PSDs S
(100)
m,m (ejΩ) for MSME-SMD [10] demonstrating approximate

spectral majorisation.
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Fig. 7. PSDs S
(100)
m,m (ejΩ) for C-MSME-SMD demonstrating approximate

spectral majorisation.

with the added benefit of being causal. The limitation of

the search space in the C-MSME-SMD algorithm appears to

be compensated by the lower growth in polynomial order.

Compared to SBR2 and SMD, both the unconstrained and

the proposed causally contrained MSME-SMD version per-

form significantly better in terms of convergence and spectral

majorisation.
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