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ABSTRACT

In this paper we present a novel approach to face recog-
nition. We propose an adaptation and extension to the
state-of-the-art methods in face recognition, such as sparse
representation-based classification and its extensions. Effec-
tively, our method combines the sparsity-based approaches
with additional least-squares steps and exhitbits robustness to
outliers achieving significant performance improvement with
little additional cost. This approach also mitigates the need
for a large number of training images since it proves robust to
varying number of training samples.

Index Terms— Face recognition, sparse representation,
classification.

1. INTRODUCTION

One of the most popular problems in computer vision is face
recognition (FR) which focuses on deducing a subject’s iden-
tity through a provided image [1]. Over the last decade, re-
searchers have been focusing on addressing practical large-
scale FR systems in uncontrolled environments [2].

Recently, face recognition via sparse representation-based
classification (SRC) [3] and its extensions [4, 5] have proven
to provide state-of-the-art performance. The main idea is that
a subject’s face sample can be represented as a sparse lin-
ear combination of available images of the same subject cap-
tured under different conditions (e.g., poses, lighting condi-
tions, etc.). The same principle can also be applied when a
face image itself is represented in a lower dimensional space
describing important and easily identifiable features. In order
to enforce sparsity, 1 optimization algorithms [6, 7] can be
employed. Then, the face class that yields the minimum re-
construction error is selected in order to classify or identify
the subject, whose test image or sample is available.

Sparse coding has also been proposed to jointly address
the problems of blurred face recognition and blind image re-
covery [8]. Furthermore, it has been utilized in [9] to deduce
a transformation-invariant face recognition algorithm as well
as in [10] to extend the SRC framework for handling mis-
alignment, pose and illumination invariance.

Despite their success, the necessity of ¢; optimization
methods for improved face recognition rates has been re-
cently criticized [11, 12]. Zhang et. al. argued that FR
performance improvement stems from the collaborative rep-
resentation of one image using multiple similar images rather
than the usage of the ¢; norm in the optimization procedure,
and proposed a simpler regularized least squares formulation
to solve the FR problem. Furthermore, the authors in [11, 13]
state that ¢; norm techniques can only be successful under
certain conditions. Specifically, Wright ef. al. state in [13]:
“The sparse representation based face recognition assumes
that the training images have been carefully controlled and
that the number of samples per class is sufficiently large.
Outside these operating conditions, it should not be expected
to perform well.”

In order to overcome the limitation of requiring large
amounts of samples per class, Deng et. al. [4, 5] proposed the
use of additional dictionaries, constructed using the available
data, to refine FR performance. The motivation for this work
comes from the fact that different images of the same subject
share a lot of similarities; hence, an additional intra-class
generic dictionary of subject samples could effectively model
face variations. In this method, which is called Extended
SRC (ESRC), the test sample is represented as a sparse lin-
ear combination of the training and intra-class dictionary
samples.

In this work, we show that sparsity-based approaches can
be effectively combined with additional least-squares steps to
provide significant performance improvement with little addi-
tional cost. Moreover, the proposed approach can overcome
the need for a large number of training images since it proves
robust to varying number of training samples as we will show
in the experimental section.

This paper is organized as follows. Section 2 overviews
existing face recognition classifiers and presents their model-
ing. The proposed face recognition algorithm is analyzed in
Section 3. Finally, experimental results and discussion about
the performance of the proposed approach are presented in
Section 4 and conclusions are drawn in Section 5.



2. RELATED WORK

In this section we survey face recognition algorithms based
on sparse representation and regularized least squares. Let
y € R% denote the face test sample, where d is the dimension-
ality of a selected face feature and T = [T}, ...,T.] € R¥*"
denote the matrix (dictionary) with the set of samples of ¢
subjects stacked in columns. T; € R%*™i denotes the n; set
of samples of the ith subject, such that, Zi n; =n.

Sparse Representation-based Classification (SRC) [3]: In
SRC, the test sample y is represented by,

y=Ta+e, (1)

where e € R? is dense noise and a € R" is a sparse vector
with nonzero elements corresponding to few samples in T.
Thus, the test sample can be represented as a sparse linear
combination of the samples in T. The coefficients of a can be
estimated solving the optimization problem,

a = argmin |y — Tal|; + \ ||, . )
a

The complete steps of the SRC algorithm are presented in
Algorithm 1.
Extended SRC (ESRC) [4]: In ESRC, the test sample y is
represented by,

y=Ta+ Vb +e, 3)

where V € R¥*" is a variation dictionary that models intra-
class variant bases, such as, lighting changes, exaggerated ex-
pressions, or occlusions, for the representation of each sub-
ject i, while a € R™ is a sparse vector, as in SRC. Different
types of variations, that cannot be captured by V, are rep-
resented by the dense noise term e € R?. Vector b € R”
is also considered to be sparse and its coefficients can effec-
tively capture the contribution of uncontrolled viewing condi-
tions in the final image and are, hence, not informative about
the subject’s identity. Thus, the test sample is represented as
the linear combination of Ta, capturing the subject’s identity,
and Vb, capturing sparse noise terms. The variation matrix
V can be constructed by the differences of each sample to its
corresponding’s class centroids, as suggested in [4],

V=[T—myr?, . . . T, —m.rT] 4)

[

where m; = %Tiri is the centroid of class 7, and r; =
[1,...,1)" e R,
In ESRC, the sparse vectors a and b can be obtained by,

=N

Similar to SRC, classification (or else subject identification)
is performed by selecting the class 7 that provides the small-
est residual. The difference is that in computing the residual

&)

a,b = argmin
ab

y_[T7V}|:2:|

1

Algorithm 1 The SRC Algorithm

Inputs: Vector y and matrix T.

1. Normalize the columns of T to have unit /5-norm.
2. Estimate the sparse vector a solving the problem in (2).
3. Compute the residuals for each class 7 as,

ei(y) = lly — Tiailly,

where a; is the segment of a associated with class 1.
Output: Identity of y as, Identity(y) = argmin,{e;}

of each class, the term Vb is also subtracted from the test
sample.

Regularized least squares (CR-RLS) [12]: In CR-RLS a
regularized least squares method is proposed in order to col-
laboratively represent the test sample without imposing spar-
sity constraints on the unknown variable a. Again, classifica-
tion is performed by minimizing the reconstruction term for
each class. The optimization problem, of this very efficient
method, is given by,

4 = argmin |y — Ta? + Aa|?2, ©6)

which can be easily solved in closed form.

3. SPARSE REPRESENTATION AND
REGULARIZED LEAST SQUARES

Let the linear representation of the test sample, y, be given by
(3). In [4], a and b were regularized using the /; norm. As
Zhang et. al. showed in [12], when increasingly many train-
ing samples are used for the representation of a test sample,
the discriminating ability between classes reduces, leading to
comparably small reconstruction errors for all classes. Thus,
sparsity of coefficients should be considered so that only a
few training samples represent the test sample. Similarly, if
there are redundant and overcomplete facial variant bases in
'V, the combination coefficients in b are naturally sparse.

In the proposed Sparse Representation and Regularized
Least Squares (SR+RLS) method, an initial estimation of a
and b is obtained by solving the ESRC problem in (5). Ide-
ally, this initial estimation will provide us with the largest co-
efficients at locations of vector a corresponding to the class
that the test sample belongs to. In other words, we expect
this class to exhibit the smallest residual compared to other
classes. However, due to face variations this may not always
be the case, and the coefficient values in a could be noisy.
Having estimated a through the optimization problem in (5),
we expect that the test sample is best represented as a linear
combination of training samples of its true class. Neverthe-
less, the corresponding mixing coefficients need not be the
largest.



The decision of the correct identity in SRC is dictated
by the minimum residual. In this work we account for the
possibility of the correct identity hiding under slightly higher
residuals than the minimum, due to face variations. Thus, we
propose a novel face recognition algorithm that is solved in
four separate steps.

1. We first estimate & and b solving the optimization prob-

lem in (5).

2. Based on the initial estimation of &, we construct a new
face dictionary that consists of the training samples of
the classes whose corresponding coefficients in a are
nonzero, while the remaining sets of training samples for
all other classes are nullified (set to zero).

3. Having constructed the new smaller dictionary we can es-
timate the new coefficients by solving a regularized least
squares problem.

4. Finally, the face identity will be chosen based on the min-
imum class residual provided by the updated coefficients.
Next, we discuss the aforementioned steps in more detail.

3.1. The Sparse Representation (SR) step

In order to obtain the initial estimation of & and b we solve
the problem in (5). This is a standard sparse coding problem
and can be solved using any ¢; minimization algorithm, such
as Homotopy [14].

3.2. Dictionary construction

Let the function f(&;), where &; is the segment of a associ-
ated with class 7, be given as,

if a,=0

fas) = {O’ . )

1, otherwise
Then the new dictionary T is constructed as follows,
T=[fa)OT,..., f(a)®T.] € R>" (8)
where © denotes the convolution operator.

3.3. The Regularized Least Squares (RLS) step

Having constructed the new dictionary with most training
samples suppressed to zero, we can obtain a new estimation
vector by solving the regularized least squares problem,

R -2
f:argminHy—TfHQ—&-)\Hng. )
3
The problem in (9) has the closed form solution,
A o~ -1 _
f— (TTT n AI) Ty, (10)

where f € R™ is the vector with nonzero coefficients only at
locations where the training samples are not zero, and A > 0
is a constant.

Algorithm 2 Classification based on SR+RLS Algorithm

Inputs: Vector y and matrix T.

1. Construct the variation matrix 'V using (4).

2. Apply PCA on the training samples T and project T
and V onto a d dimensional space.

3. Normalize the columns of T and V to have unit ¢5-
norm.

4. Estimate 4 and b solving the problem in (5).

5. Construct dictionary T using the estimated coefficients
in &4 and estimate f using the problem in (9).

6. Compute the residuals for each class 7 as,

)

ei(y) = Hy ~T,f; ,

where f; is the coding coefficient vector associated with
class i.

Output: Identity of y as, Identity(y) = argmin, {e;} .

The solution to problem (9) has the following properties,

e The RLS step is more likely to provide the true identity
since we reconstruct for fewer classes and thus less noise.

e We expect f to have larger coefficient values correspond-
ing to the true identity’s training samples compared to the
initial estimate a through (5).

e The problem in (9) is well-defined since T is expected to
consist of fewer (nonzero) columns than rows. Thus, RLS
is appropriate for solving such problem.

e We do not add significant complexity to the solution since
the least squares step in (10) can be solved very efficiently.

3.4. The SR+RLS classification

The SR+RLS algorithm is summarized in Algorithm 2. An
example of our method is presented in Figure 2.

4. EXPERIMENTAL RESULTS

In this section we present experiments on publicly available
databases, AR [15] and Extended Yale B [16], to show the
efficacy of the proposed method. In order to solve the ¢
minimization problem we use the Homotopy method [14].
We compare our method with SRC [3], ESRC [4] and CR-
RLS! [12]. For SRC and ESRC we set the regularization pa-
rameter A = 0.005 as proposed in [4] and for CR-LRS we set
A = 0.001 as suggested in [12]. For fair comparisons, we set
the same parameters in our algorithm as the other methods:
A = 0.005 for the ¢; problem and A = 0.001 for the regular-
ized least squares problem. All parameters remain the same
for both databases. As input facial features we use Eigenfaces
with d = 300.

'Source code obtained from author’s website.
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Fig. 1: The top left figure shows an example face, belonging to iden-
tity 4, occluded with a scarf. The upper left plot shows the coeffi-
cient values of the estimated & using the problem in (5). The upper
right plot shows the coefficient values of f estimated by the prob-
lem in (9). The lower two plots show the estimated residuals after
solving problems (5) and (9) from left to right, respectively. ESRC
would classify this face as identity 29 since the lowest residual is at
index 29 while the re-estimation of coefficients, as described in Sec-
tion 3.3, results in the correct classification of the image providing
the minimum residual at index 4.
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Fig. 2: Example images from the AR database. This database is
more challenging than the Yale, since more subjects need to be rec-
ognized while there exhibits large face variations within each class.

4.1. AR database

This experiment is a reproduction of that in section 5 of [11]%.
The AR database consists of over 3000 frontal images of 126
individuals. There are 26 images of each individual, and each
person participated in two sessions, separated by two weeks.
The faces in AR contain variations such as changes in illu-
mination, expressions and facial disguises (e.g., sunglasses or
scarfs). Example images of this database are shown in Fig-
ure 2.

In our experiments, 100 subjects were randomly chosen
(50 male and 50 female). For each subject, we randomly per-
mute the 26 images, and then take the first half for training
and the rest for testing. Thus, we have 1300 training and
1300 testing samples. For statistical stability, we generate 10
different training and testing dataset pairs by randomly per-

2The method in [11] is very similar to the CR-LRS [12]. The difference
is that in [12] a regularization £2 norm term is incorporated. However, with
A = 0.001 set to a relative small number the results were the same

Table 1: Recognition rate on the AR database.

‘ Algorithms ‘Recognition rate‘ Time ‘

SRC [3] 92.49 £0.82 0.0266s
ESRC [4] 96.98 +0.46 0.0982
CR-RLS [12] 96.80 £0.54 0.0002s
SR+RLS 98.07 £0.38 0.1040s

Table 2: Recognition rate on the Extended Yale B database.

‘ Algorithms ‘Recognition rate‘ Time ‘

SRC [3] 97.17 £0.62 0.0339s
ESRC [4] 96.65 £0.76 0.0630s
CR-RLS [12] 97.78 £0.49 0.0002s
SR+RLS 98.11 £0.23 0.0747s

muting 10 times. The images are cropped to have dimensions
165 x 120 pixels and converted to gray-scale.

Table 1 shows the recognition rates for this experiment.
SR+RLS achieves the highest performance with 98.07%
while ESRC has the second best recognition rate, slightly
better than CR-RLS.

4.2. Extended Yale B database

The extended Yale B dataset consists of 2414 frontal face im-
ages of 38 subjects. They are captured under various lighting
conditions. They are cropped to have dimensions 192 x 168
pixels and normalized. For each subject, we randomly select
half of the images for training (i.e., about 32 images per sub-
ject) and the other half for testing. Again for each subject, we
randomly permute the images per subject and take the first
half for training and the rest for testing. For statistical stabil-
ity, we generate 10 different training and testing dataset pairs.

In Table 2 we report the performance for this experiment.
Again, SR+RLS achieves the highest recognition rate with
98.11%. CR-RLS achieves the second best, while ESRC has
even lower performance than SRC.

4.3. Recognition from fewer training samples

In order to show the robustness of our proposed method we
evaluate AR and Extended Yale B databases with fewer train-
ing samples per subject keeping the same number of test sam-
ples. For the AR database, we perform two experiments,
where we randomly choose 8 (AR_8) and 4 (AR_4) training
samples per subject. In the Yale database we randomly choose
8 training samples per subject. Again, for statistical stability,
we generate 10 different training and test dataset pairs.

The results are presented in Table 3. It is apparent that,
with fewer training samples, SRC’s performance reduces dra-
matically, which is consistent with the observations in [11,
12]. On the other hand, our method proves its robustness
even with fewer training samples per subject outperforming
the state-of-the-art methods.



Table 3: Recognition rate on the AR and Extended Yale B databases
using reduced training samples.

[ Algorithms | Yale8 | ARS8 | AR4 |
SRC[3] | 85.15+1.02 | 84.52£0.79 | 69.12 £1.58
ESRC [4] | 8449 +£1.29 | 9330 £1.23 | 83.73 £0.91
CR-RLS [12] | 88.51 £1.06 | 93.99 +0.64 | 85.06 £0.90
SR+RLS | 88.87 £0.65 | 95.48 £0.58 | 85.12 +1.04

4.4. Discussion

The following conclusions are drawn based on the results on

the two tested databases:

1. For both databases, SR+RLS outperforms SRC, ESRC
and CR-RLS either with all training samples or few train-
ing samples.

2. ESRC has lower recognition rate for the Yale B database
than the SRC when multiple training samples are consid-
ered. Instead, SR+RLS is consistent in performance in
both databases for all cases.

3. Our method has the lowest time performance compared
to the other methods. However, the overhead of the regu-
larized least squares step is insignificant compared to the
initial /1 estimation. All experiments were conducted in
MATLAB on a 3.0 GHz PC with 8 GB RAM.

5. CONCLUSIONS

In this work, we presented a novel approach to face recogni-
tion effectively combining sparse representation and regular-
ized least squares-based classification. We show that a simple
additional least squares step in the optimization procedure can
provide noticeable performance improvement while being ro-
bust to varying numbers of training samples in the dictionary.
Hence, we manage to improve the face recognition perfor-
mance of [; minimization schemes even with low availability
of training data samples, despite the criticism that such meth-
ods are not beneficial under lack of numerous samples per
class.
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