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ABSTRACT

We consider the problem of modelling asymmetric near-
Gaussian correlated signals by autoregressive models with
epsilon-skew normal innovations. Moments and maximum
likelihood estimators of the parameters are proposed and their
limit distributions are derived. Monte Carlo simulation results
are analyzed and the model is fitted to a real time series.

Index Terms— Non-Gaussian, skewness, autoregressive
model, maximum likelihood estimation.

1. INTRODUCTION

In the modelling of non-Gaussian time series, two strategies
may be adopted. We may either retain the general autoregres-
sive moving average (ARMA) framework and allow the white
noise to be non-Gaussian, or we may completely abandon the
linearity assumption, see e.g. [1], [2]. In the former case, the
difficulty is to choose the distribution of the white noise ap-
propriately so that the ARMA time series exhibits a specified
non-Gaussian feature. In the latter case, one has to find an ad-
equate explicit model among infinitely many nonlinear forms
that typically express the time series as a nonlinear function
of its lagged values.

In this paper, we are interested in correlated data exhibit-
ing asymmetry and we follow the first strategy. The data are
short-range dependent in the sense that their autocorrelations
decay to zero exponentially, and their distributions are near-
Gaussian. We study the problem of fitting an AR model to
these data. Indeed, AR models are very popular in the sig-
nal processing community. They are used for instance for
spectral analysis, for modelling speech and audio signals, and
for identifying systems in control engineering. A causal AR
model with a martingale difference sequence as innovations
has the nice property that optimal (in the mean square sense)
nonlinear infinite past predictors reduce to linear finite past
predictors. Furthermore, the so-called Yule-Walker estimator
of the parameters of an AR model can be easily calculated
using the well-known Levinson-Durbin algorithm, leading to
fast implementations. The Yule-Walker estimator is strongly
consistent and asymptotically efficient when the innovations
are Gaussian, see for instance [3, Chap. 8].

Many non-Gaussian AR models were proposed in the
literature. For instance, integer-valued AR processes have

been introduced to model weakly dependent sequences of
counts, see e.g. [4], [5] and [6] for pioneer works. AR
models with exponentially distributed innovations were stud-
ied by [7], [8] and [9]. The problem of ARMA modelling
with non-Gaussian innovations was addressed by [10]. The
authors established general results on maximum likelihood
estimates (MLE) of the ARMA parameters and as real exam-
ples, they fitted ARMA models with log-normal and gamma
innovations to the sunspot and the Canadian lynx data re-
spectively, demonstrating that linear time series model with
non-Gaussian innovations can be a useful tool in time series
modelling. The estimation of AR models with symmetric
innovations that follow a shift-scaled Student’s t distribution
was considered by [11, 12]. AR models with asymmetric
innovations distributed according to gamma and generalized
logistic distributions were studied by [13], [14] and [15].
These authors derived modified MLE of the parameters that
are easy to compute. On the other hand, a different approach
that consists in modelling a non-Gaussian time series as a
nonlinear instantaneous transformation of a Gaussian ARMA
time series, the nonlinear transformation being determined
from the first-order marginal distribution of the data was
proposed by [16].

Here, we consider the statistical estimation of an AR
model with iid epsilon-skew-normal (ESN) innovations. The
ESN distribution, the origin of which can be traced back to
[17], was defined by [18] and has been used in regression
problems by [19]. Its main advantage is its flexibility since it
is analytically tractable, it accommodates practical values of
skewness and kurtosis, and it strictly includes the Gaussian
distribution. It is therefore of interest to investigate the use
of the ESN distribution to model correlated asymmetric data
and the purpose of this paper is to consider AR modelling
with ESN innovations. The Yule-Walker estimator of the AR
parameters is strongly consistent but it is not asymptotically
efficient since the innovations are non-Gaussian.

The rest of this paper is organized as follows. The AR
model with ESN innovations is presented in Section 2. Mo-
ments estimates (ME) and MLE of the parameters are estab-
lished in Section 3. Numerical simulation results for finite
samples are presented in Section 4, and a real data modelling
is considered in Section 5. Concluding remarks can be found
in Section 6.



2. MODEL DESCRIPTION

Let f(x) = exp(−x2/2)/
√

2π be the standard Gaussian den-
sity. The ESN distribution is the skewed version of f defined
by

fε(x) = f

[
x

1 + ε

]
1{x<0}+f

[
x

1− ε

]
1{x≥0},

where ε ∈ (−1, 1) is the skew parameter. We extend the
family fε to include location and scale parameters. Let Y be a
random variable with density fε. The family of location-scale
ESN distributions is defined as the distribution ofZ = µ+σY
for µ ∈ R and σ > 0. The corresponding density is given by

fθ(x) =
1

σ
fε

[
x− µ

(1 + ε)σ

]
1{x<µ}+

1

σ
fε

[
x− µ

(1− ε)σ

]
1{x≥µ},

where θ = (ε, µ, σ), and we denote Z ∼ ESN(ε, µ, σ). The
distribution of Z is unimodal with mode at µ and it has prob-
ability mass (1 + ε)/2 below the mode. If Z ∼ ESN(ε, 0, 1),
then Z has the same distribution as UV where U and V are
two independent random variables, U is discrete with P(U =
1 − ε) = (1 − ε)/2, P(U = −1 − ε) = (1 + ε)/2, and V is
absolutely continuous with the density 2f(x)1{x≥0} (V has
the same distribution as |S| where S is a standard Gaussian
random variable), see [20]. This stochastic representation of
Z is useful for generating realizations of Z and for calculat-
ing the moments of Z. Specifically, if Z ∼ ESN(ε, µ, σ),
E(Z) = µ− 4σε/

√
2π and the kth central moment of Z is

E(Z − EZ)k =
σk√
2π

k∑
l=0

(
k

l

)(
4ε√
2π

)k−l
(
(−1)lIl(−ε) + Il(ε)

)
,

where

Il(ε) =

{√
π
2 (1− ε)l+1

∏m
i=1(2i− 1) if l = 2m,

2m(1− ε)l+1m! if l = 2m+ 1.

Therefore, (−1)lIl(−ε)+Il(ε) is a polynomial of degree l and
the kth central moment ofZ takes the form σkPk(ε) where Pk
is a polynomial of degree k. For k > 1, the kth cumulant ck,Z
of Z is obtained from the lth central moments for l ≤ k by
means of well-known polynomial relations, see for instance
[21, eqn (3.43)]. It follows from these relations that ck,Z ,
k > 1, takes also the form σkP ′k(ε) where P ′k is a polynomial
of degree k. The four firsts cumulants of Z are

c1,Z = µ− 4σε/
√

2π,

c2,Z =
σ2

π
[(3π − 8)ε2 + π],

c3,Z =
2
√

2σ3ε

π3/2
[(5π − 16)ε2 − π],

c4,Z =
4σ4ε2

π2
[(−3π2 + 40π − 96)ε2 + π(3π − 8)].

(1)

Since ε ∈ (−1, 1), c3,Z/c
3/2
2,Z ∈ (−c0, c0) where c0 =

√
2(4−

π)(π − 2)−3/2 = 0.995, and c4,Z/c22,Z ∈ (0, 0.870). The
ESN distribution is therefore useful for modelling asymmetric
data with slight leptokurticity. Of course, the ESN(ε, µ, σ)
distribution reduces to the Gaussian distribution with mean µ
and variance σ2 when ε = 0.

An AR(p) model with ESN innovations is defined by the
difference equation

Xt = φ1Xt−1 + . . .+ φpXt−p + Zt, (2)

where (Zt) is a sequence of independent and identically dis-
tributed (iid) random variables with Zt ∼ ESN(ε, µ, σ), and
polynomial φ(z) = 1−φ1z−· · ·−φpzp with real coefficients
has no zeros in the closed unit disk {z ∈ C : |z| ≤ 1}. The
(unique) stationary solution (Xt) of (2) has the MA represen-
tation Xt =

∑∞
i=0 ψiZt−i, where (ψi) are the coefficients in

the Taylor series expansion of 1/φ(z) for |z| ≤ 1. We have∑
|ψi| < +∞, and then finiteness of E(|Zt|k) imply finite-

ness of E(|Xt|k) for all k ≥ 1.

3. PARAMETER ESTIMATION

Fitting model (2) to some data consists in choosing p and es-
timating the parameter vector η = (φ′, µ, ε, σ2)′ where φ =
(φ1, . . . , φp)

′ and φ′ denotes the transpose of φ. In all the fol-
lowing, we assume that η lies in the open set S = C × R ×
(−1, 1) × (0,∞), where C is the interior of the domain of
vectors φ such that φ(z) has no zeros in the closed unit disk.
We shall denote by ‖ · ‖ the Euclidean norm in Rp+3, so that
‖η‖2 = η′η. We shall first propose ME which will be used as
initial values in a quasi-Newton method to find MLE.

The standard Yule-Walker equations for model (2) are

M2φ = m2,

where M2 is the invertible covariance matrix [m2,i−j ]
p
i,j=1,

m2 = (m2,1, . . . ,m2,p)
′ and m2,k = E(X0Xk) − E(X0)2.

The Yule-Walker estimator φ̂n of parameter vector φ based
on observations (Xt)

n
t=1 is φ̂n = M̂−12 m̂2, where M̂2

is the sample covariance matrix [m̂2,|i−j|]
p
i,j=1, m̂2 =

(m̂2,1, . . . , m̂2,p)
′ with m̂2,k = 1

n

∑n−k
t=1 (Xt − X)(Xt+k −

X) and X = 1
n

∑n
t=1Xt. According to [3, Theorem 8.1.1],

φ̂n
a.s.−−→ φ and

√
n(φ̂n − φ)

d−→ N (0, c2,ZM
−1
2 ) as n → ∞.

Moreover, the covariance matrix c2,ZM−12 depends only on
the parameter vector φ.

Let

Ẑt = Xt − φ̂n,1Xt−1 − · · · − φ̂n,pXt−p.

The ME of (µ, ε, σ2), denoted by (µ̂n, ε̂n, σ̂
2
n) are obtained

by solving the first three equations in (1) where the left-hand



sides are replaced by the corresponding sample cumulants ob-
tained from (Ẑt). Let k = 2, 3, and

ĉk,Z =
1

n

n∑
t=p+1

(
Ẑt − Ẑ

)k
where Ẑ =

1

n

n∑
t=p+1

Ẑt,

we obtain,

ε̂n = g−1(ĉ3,Z/ĉ
3/2
2,Z),

σ̂2
n =

πĉ2,Z
(3π − 8)ε̂2n + π

,

µ̂n = Ẑ + 4σ̂nε̂n/
√

2π,

(3)

where g : (−1, 1)→ (−c0, c0) is defined by

g(x) = 2
√

2x
(5π − 16)x2 − π

[(3π − 8)x2 + π]3/2
. (4)

Function g is continuously differentiable on (−1, 1) with
derivative

g′(x) = 2
√

2π
(21π − 64)x2 − π

[(3π − 8)x2 + π]5/2
.

On the interval (−1, 1), g′ < 0 and then g is strictly monotone
which implies that g is an homeomorphism from (−1, 1) onto
(−c0, c0). If ĉ3,Z/ĉ

3/2
2,Z 6∈ (−c0, c0), the ME (µ̂n, ε̂n, σ̂

2
n) are

not defined. Since

Ẑt = Zt +

p∑
i=1

(φi − φ̂n,i)Xt−i,

and φ̂n
a.s.−−→ φ, E |Zkt X

k1
t−1 . . . X

kp
t−p| < ∞ for all non-

negative integers k, k1, . . . , kp, we have Ẑ a.s.−−→ E(Zt) and
ĉk,Z

a.s.−−→ E(Zt −E(Zt))
k as n→∞. Hence, the continuity

of transformation (3) implies that (µ̂n, ε̂n, σ̂
2
n)

a.s.−−→ (µ, ε, σ2)
as n → ∞. Furthermore, it can be shown that the ME
η̂n = (φ̂′n, µ̂n, ε̂n, σ̂

2
n)′ of η is asymptotically normal at the

usual rate
√
n.

Since (Zt) is non-Gaussian, η̂n is not asymptotically ef-
ficient in general. We now present the MLE of η, and in
the following we suppose that η0 is the true value of η. We
consider the likelihood estimator based on maximization of
the conditional likelihood of (X1, . . . , Xn) conditionally to
(X1, . . . , Xp). According to (2), the logarithm of the condi-
tional likelihood is

Ln(η) =
∑n
t=p+1 ln fθ(Xt − φ1Xt−1 − · · · − φpXt−p).

Our main result is the following.

Theorem 1. Let (Xt) be defined by (2) where φ is re-
placed by φ0 and (Zt) are iid random variables with an
ESN(ε0, µ0, σ0) distribution, and let η0 = (φ′0, µ0, ε0, σ

2
0)′ ∈

S. Then, there exists a sequence of estimators (η̃n) such that,
for any ε > 0, there exists an event E with P(E) > 1 − ε
and an n0 such that on E, for n > n0, ∂Ln

∂η (η̃n) = 0 and Ln
attains a relative maximum at η̃n. Furthermore, η̃n

a.s.−−→ η0

and
√
n(η̃n − η0)

d−→ N(0,Σ) as n→∞, where

Σ = σ2
0(1− ε20)


M−12 −mM−12 e 0 0

−me′M−12 c1 c2 0
0 c2 c3 0
0 0 0 c4

 , (5)

m = E(Xt) = (µ0 − 4σ0ε0/
√

2π)/(1− e′φ0),

e = (1, . . . , 1)′, c1 =
3π

3π − 8
+m2e′M−12 e,

c2 =
2
√

2π

(3π − 8)σ0
, c3 =

π

(3π − 8)σ2
0

, c4 =
2σ2

0

1− ε20
,

and M2 is calculated for η = η0. The covariance matrix Σ
can be estimated strongly consistently by replacing η0 by η̃n
in its expression. One may also replace M2 by the estimated
covariance matrix [m̂2,i−j ]

p
i,j=1.

Remark 1. The MLE η̃n is asymptotically efficient, i.e., Σ is
the inverse of the Fisher information matrix of η evaluated at
η0.

Remark 2. The MLE σ̃2
n and φ̃n are asymptotically indepen-

dent of (φ̃′n, µ̃n, ε̃n) and ε̃n, respectively. This property does
not hold for the ME. Furthermore, the asymptotic covariance
of φ̃n is reduced compared to the asymptotic covariance of
the Yule-Walker estimator φ̂n by the factor

c2,Z
σ2
0(1− ε20)

=
(3π − 8)ε20 + π

π(1− ε20)
∈ [1,∞).

This factor is a strictly increasing function of |ε0| and is equal
to 1 in the Gaussian case ε0 = 0. On the other hand, the
asymptotic variances of φ̃n, µ̃n, ε̃n and σ̃2

n depend on (φ0, ε0),
(φ0, µ0, ε0, σ

2
0), ε0 and σ2

0 , respectively.

Remark 3. When the skewness ε0 is known a priori and is
not estimated, the asymptotic covariance Ψ of the MLE of
(φ′0, µ0, σ

2
0)′ is obtained by inverting the matrix V = Σ−1

whose (p+ 2)th row and (p+ 2)th column have been deleted.
We obtain that

Ψ = σ2
0(1− ε20)

 M−12 −mM−12 e 0
−me′M−12 c8 0

0 0 c4

 , (6)

where c8 = 1 + m2e′M−12 e and M2,m are calculated for
η = η0. Therefore, the asymptotic variance of the MLE of
the location µ0 is reduced by the factor

c1
c8

=
3π

3π−8 +m2e′M−12 e

1 +m2e′M−12 e

when the value of the skewness, if known a priori, is used.
The asymptotic covariances of φ̃n and σ̃2

n are unchanged.



Remark 4. When it is known that (Xt) is Gaussian and thus
the skewness is not estimated, (φ̃n, µ̃n) coincide with the
usual least squares estimates (LSE) (φLS

n , µ
LS
n ) obtained by

minimizing the sum of squares

S(φ, µ) =

n∑
t=p+1

(Xt − φ1Xt−1 − · · · − φpXt−p − µ)2,

and σ̃2
n = σ2,LS

n = (n−p)−1S(φLS
n , µ

LS
n ). The corresponding

asymptotic covariance is given by (6) where ε0 = 0.

Remark 5. It is instructive to study the properties of estima-
tor (φLS

n , µ
LS
n , σ

2,LS
n ) when ε0 6= 0. According to the standard

theory, (φLS
n , µ

LS
n , σ

2,LS
n )

a.s.−−→ (φ0, c1,Z , c2,Z) and
√
n(φLS

n −
φ0)

d−→ N(0, c2,ZM
−1
2 ). Therefore, when ε0 6= 0, φLS

n is con-
sistent but is not efficient, and we deduce from (1) that µLS

n

tends to overestimate the location µ when ε0 < 0 and tends to
underestimate µwhen ε0 > 0, and σ2,LS

n tends to overestimate
σ2.

4. MONTE CARLO SIMULATIONS

In this section, we illustrate the finite sample behaviors of the
ME η̂n and the MLE ε̃n by Monte Carlo simulations. All the
experiments are based on 1000 replications, and the number
of data considered is n = 1000. For each realization, η̂n is
used as initial value in a quasi-Newton method to find η̃n.
The data generating process is a causal AR(1) model with
Zt ∼ ESN(ε, µ, σ). We fix φ = 0.8, µ = 10, σ2 = 1 and ε
varies in (−1, 1). In Figure 1, we plot the mean square errors
(MSE) of η̂n and η̃n, and the asymptotic variances of η̃n as
a function of ε. For the four parameters, we observe that the
MSE of η̂n are significantly larger than those of η̃n, and the
differences between the MSE increase as the absolute value
of ε increases. Furthermore, the MSE of η̃n are close from
the asymptotic variances given by (5).

5. REAL DATA EXAMPLE

We consider the Dow-Jones Utilities index between July 3,
1972 and December 20, 1972. The very slowly decaying pos-
itive sample autocorrelation function of this time series sug-
gests differencing at lag one before attempting to fit a station-
ary model, see [22, Example 5.1.1]. Figure 2 shows that the
differenced series is asymmetric and may be modelled by an
AR(1) process.

We fit an AR(1) model with ESN innovations and we
compare with an AR(1) model with Gaussian innovations.
The results are given in Table 1 where the variances are cal-
culated with (5) where η0 is replaced by η̃n, and (6) where
ε0 = 0 and (φ0, µ0, σ

2
0) is replaced by (φLS

n , µ
LS
n , σ

2,LS
n ),

respectively. The approximate 95% confidence interval
for the skewness parameter ε deduced from Table 1 is
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Fig. 1. MSE of η̂n and η̃n, and asymptotic variances (ASY)
of η̃n when φ = 0.8, µ = 10, σ2 = 1 and n = 1000.

η
ESN Gaussian

Estimate Variance Estimate Variance
φ 0.47 5.8e-3 0.49 6.4e-3
µ -0.11 6.3e-3 0.05 1.2e-3
σ2 0.12 2.6e-4 0.13 2.8e-4
ε -0.30 1.7e-2 - -

Table 1. AR(1) models with ESN and Gaussian innovations
fitted to the differenced series of the Dow-Jones Utilities in-
dex (Jul. 3 - Dec. 20, 1972).



(a)

0 20 40 60 80 100 120

−0
.5

0.
0

0.
5

1.
0

1.
5

(b)

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

0 5 10 15 20

−0
.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c)

5 10 15 20

−0
.2

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(d)

Fig. 2. Differenced series of the Dow-Jones Utilities index
(Jul. 3 - Dec. 20, 1972): (a) Series, (b) Histogram, (c) Sam-
ple autocorrelation function, (d) Sample partial autocorrela-
tion function.

(−0.56,−0.04). Therefore, we reject at the 5% significance
level the hypothesis that ε is zero.

Finally, we use the normality tests by Shapiro-Wilk and
Jarque-Bera to check the residuals of the Gaussian AR(1)
model. The corresponding p-values are 1.9 · 10−2 and 4.6 ·
10−4. Therefore, both tests reject the null hypothesis of nor-
mality at the 95% confidence level.

6. CONCLUSIONS

We have proposed an AR process with ESN innovations to
model near-Gaussian asymmetric correlated data. The great
flexibility of the ESN distribution allows to model a large
class of data with slight leptokurticity.
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