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ABSTRACT 
 
This paper presents robust feature extractors for a continu-
ous speech recognition task in matched and mismatched 
environments. The mismatched conditions may occur due to 
additive noise, different channel, and acoustic reverberation. 
In the conventional Mel-frequency cepstral coefficient 
(MFCC) feature extraction framework, a subband spectrum 
enhancement technique is incorporated to improve its ro-
bustness. We denote this front-end as robust MFCCs 
(RMFCC). Based on the gammatone and compressive 
gammachirp filter-banks, robust gammatone filterbank cep-
stral coefficients (RGFCC) and robust compressive gam-
machirp filterbank cepstral coefficients (RCGCC) are also 
presented for comparison. We also employ low-variance 
spectrum estimators such as multitaper, regularized mini-
mum-variance distortionless response (RMVDR), instead of 
a discrete Fourier transform-based direct spectrum estimator 
for improving robustness against mismatched environments. 
Speech recognition performances of the robust feature ex-
tractors are evaluated in clean as well as multi-style training 
conditions of the AURORA-4 continuous speech recogni-
tion task. Experimental results depict that the RMFCC and 
low-variance spectrum-estimators-based robust feature 
extractors outperformed the MFCC, PNCC (power normal-
ized cepstral coefficients), and ETSI-AFE features both in 
clean and multi-condition training conditions.  
 

Index Terms— Robust feature extractor, speech recog-
nition, multi-style training, aurora 4, multitaper  
 

1. INTRODUCTION 
 
The objective of automatic speech recognition (ASR) is to 
recognize human speech such as words or phonemes and 
sentences. Speech recognition systems may be divided into 
two modules: a front-end or feature extractor and a back-end 
or recognizer. The task of a feature extractor is to obtain a 
compact representation of a speech signal that compresses 
the relevant information into a small number of coefficients, 
e.g., Mel-frequency cepstral coefficients (MFCC) [1] and 

                                                
 

perceptual linear prediction (PLP) [2] coefficients. The 
back-end module recognizes the underlying content (i.e., 
text) of the input signal using the features extracted by the 
front-end. Conventional MFCC and PLP feature-based 
speech recognition systems perform well in ideal operating 
conditions where there is no mismatch between the training 
and test environments. A major impediment for deployment 
of speech recognition technologies is the degradation of 
recognition performance when differences exist between 
environments during the training and testing conditions. 
These differences, known as mismatched conditions, are due 
to corruption of speech signals by acoustic background 
noise, channel frequency response, different channels, and 
reverberation. Much research in the literature has been done 
to improve the robustness of speech recognition systems 
under mismatched conditions. The methods to compensate 
for the effects of environmental mismatch can be imple-
mented at the front-end or at the back-end or both. Robust 
feature extractors are usually obtained either by appending a 
pre-processing step, like speech enhancement [3-5], or by 
incorporating algorithms in an MFCC or PLP computation 
framework such as power normalized cepstral coefficients 
(PNCC) [6], robust compressive gammachirp cepstral coef-
ficients (RCGCC) [7], frequency masking [9], or by adding 
a post-processing step, like feature normalization techniques 
[8, 9], (e.g., cepstral mean normalization (CMN)) or by 
combining any two or all of the above mentioned steps [6-7, 
10]. Most of the front-ends use, in addition to other tech-
niques for environmental mismatch compensation, a feature 
normalization technique, at the least CMN, as a post-
processing scheme. Additive noise reduction approaches 
usually have a tradeoff between the amount of noise reduc-
tion and speech distortion induced due to processing of a 
speech signal. At very low SNR the intensity of this induced 
distortion is high, thereby deteriorating the performance of 
the speech recognition systems.  
In this work we present robust feature extractors that em-
ploy a subband spectrum enhancement technique based on a 
posteriori signal-to noise ratio (SNR) and as a post-
processing scheme use a short-time feature normalization 
method to normalize the features. Depending on the method, 
a DFT-based direct spectrum estimator or regularized 
MVDR (RMVDR) spectrum estimator [19], used for esti-



mating the speech power spectrum, two robust feature ex-
tractors, namely, robust MFCCs (RMFCC) and robust 
RMVDR cepstral coefficients (RRMCC) [16] are obtained. 
RMFCC is similar to robust compressive gammachirp fil-
terbank cepstral coefficients (RCGCC) proposed in our 
previous work [7]. In RMFCC, a Mel-scale filterbank is 
used for auditory spectral analysis instead of a compressive 
gammachirp filterbank. Similarly, by incorporating a me-
dium duration power bias subtraction (MDPBS) [6] into the 
MFCC framework, two front-ends, dubbed as normalized 
MFCCs (NMFCC) and normalized regularized MVDR 
cepstral coefficients (NRMCC) [16], are also presented. We 
also present multiple windowed spectrum estimation-based 
MFCCs, dubbed as multitaper MFCC (MMFCC), features 
for improving the performance of MFCC features in clean 
as well as multistyle training conditions.      
In order to compare speech recognition performances of the 
above-mentioned front-ends, the following front-ends are 
chosen: MFCC, ETSI-advanced front-end (ETSI-AFE) [10], 
PNCC [6], and RCGCC [7]. Experimental results on the 
AURORA-4 corpus depict that the RMFCC, NMFCC, 
RRMFCC, NRMCC front-ends provide lower recognition 
WERs than the PNCC, ETSI-AFE, RCGCC, and RGFCC 
front-ends in both training conditions.  

  
2. ROBUST FEATURE EXTRACTORS 

 
Robust front-ends presented in this work are shown in fig. 1. 
The RMFCC feature extractor, similar to [7], incorporates a 
sigmoid shape suppression rule  ,W n m based on the sub-
band a posteriori signal-to-noise ratio (the ratio of noisy 
auditory spectra and the noise auditory spectra)  ,sb n m  in 
order to enhance the auditory spectrum as: 
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where n is the subband index, m is the frame index, 1/a and 
c are the slope and mean, respectively. Here, a = c = 4.5 is 
chosen experimentally [7]. 
For auditory frequency analysis of speech spectra, a mel-
filterbank is used instead of a compressive gammachirp 
filter-bank. Similar to [6, 20] this feature extractor also uses 
power function nonlinearity with a coefficient of 1/15 to 
approximate the relationship between a human's perception 
of loudness and the sound intensity. For feature normaliza-
tion a short-time mean and scale normalization (STMSN) 
[8] technique is used with a sliding window of 1.5 seconds. 
It, under mismatched conditions, helps to remove the differ-
ence of log spectrum between the training and test environ-
ments by adjusting the short-time mean and scale. Using a 
gammatone filterbank and following the same framework as 
the RMFCC we also present robust gammatone filterbank 
cepstral coefficient (RGFCC) features to provide a compari-
son of the Mel-, gammatone-, and compressive gam-

machirp-filterbanks in terms of speech recognition perform-
ances.  
The only difference between the RRMCC and RMFCC 
front-ends are in the spectrum estimation. The RRMCC 
features are computed from regularized MVDR spectral 
estimates whereas DFT-based direct spectral estimates are 
used for computing RMFCC features.  
The NMFCC front-end incorporates a medium-duration 
power bias subtraction (MDPBS) technique, originally pro-
posed in [6], based on the arithmetic mean (AM)-geometric 
mean (GM) ratio, for background noise reduction. A cep-
stral mean normalization technique is used to normalize the 
features. The NRMCC front-end [16] can be considered a 
variant of the PNCC in which gammatone filterbank is re-
placed with the triangular-shaped Mel filterbank and a regu-
larized MVDR (RMVDR) spectrum estimator [19] is used 
instead of a DFT-based direct spectrum estimator. As a post-
processing scheme, cepstral mean normalization is used.  

 
Fig. 1. Block diagram showing different steps of the robust mel-
frequency cepstral coefficients (RMFCC), normalized MFCCs 
(NMFCC), robust regularized MVDR cepstral coefficients 
(RRMCC), and normalized regularized MVDR cepstral coeffi-
cients (NRMCC). Depending on the spectrum estimator, 
RMFCC/RRMCC features can be obtained when 1 is connected to 
2. When points 1 & 3 are connected, NMFCC/NRMCC features 
can be obtained depending on the DFT-based spectrum estimation 
method/RMVDR spectrum estimator used.  

3. REGULARIZED MVDR CEPSTRAL 
COEFFICIENTS (RMCC) FEATURE 

 
When RMVDR spectrum estimator is used to compute the 
cepstral features instead of the DFT-based spectrum estima-
tor we denote the features as the regularized MVDR cepstral 
coefficients (RMCC). RMCC was introduced in [19] and 
evaluated on the AURORA-4 corpus under clean training 
mode. Here we evaluate RMCC under multistyle training 
mode. In this section we provide a brief description about 
the RMVDR spectrum estimation method. 



Similar to the MVDR spectrum estimator, the p-th order 
regularized MVDR spectral estimate can be parametrically 
written as 
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where the parameter  r k of the regularized MVDR 
method can be obtained from a non-iterative computation 
using the regularized LP (RLP) coefficients r

qa and the pre-

diction error variance r
e as: 
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The regularized predictor coefficients r
qa are computed by 

adding a penalty measure  ua , which is a function of the 

unknown predictor coefficients ua , to the objective function 
of the LP method and therefore, minimizing the modified 
objective function of the following form [26-27]   
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where  s n is the current speech sample, regularization 
constant 0   controls the smoothness of the all-pole spec-
tral envelope. RLP method helps to penalize the rapid 
changes in all-pole spectral envelope and therefore, pro-
duces a smooth spectral estimate keeping the formant posi-
tions unaffected [26]. The optimal values chosen for the 
model order p and regularization constant  are 100 & 10-9, 
respectively [19]. 

 
4. MULTIPLE WINDOWED MFCC (MMFCC) 

FEATURES 
 

In the MMFCC front-end [17, 18, 21], cepstral features are 
computed from a multiple windowed or multitapered (e.g., 
Thomson window) spectrum estimate instead of the single 
windowed (e.g., Hamming) spectrum estimates as used in 
conventional MFCC. A multitaper spectrum estimator is 
given by: 
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where N is the frame length, pw is the pth data taper 

( 1,2,...,.p M ) used for the spectral estimate ˆ ( )MTS  , which 
is also called the pth eigenspectrum, M denotes the number 
of tapers and  p  is the weight corresponding to the pth 

taper. The tapers  pw j  are chosen to be orthonormal so 
that  
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Unlike conventional tapers, the M orthonormal tapers used 
in a multi-taper spectrum estimator provide M statistically 
independent (hence uncorrelated) estimates of the underly-
ing spectrum. The weighted average of the M individual 
spectral estimates  ˆ

MTS   then has smaller variance than the 
single-taper spectrum estimates by a factor that approaches 
1 M [17]. The cepstral features computed from this spec-
trum will also have low variance [17, 18].  
In this work we use the Thomson multitaper method. The 
tapers and taper wieghts in this method can be obtained 
using the following MATLAB function: 
                            dpss( ,  3.5, ).w N M    
The optimum number of tapers for a continuous speech 
recognition task was found to be M = 4 for multistyle train-
ing and M = 6 for clean training condition.  

 
5. EXPERIMENTS 

 
To evaluate speech recognition performances of the front-
ends considered in this work, experiments were carried out 
on the AURORA-4 LVCSR corpus [22, 23] using clean and 
multistyle training. Results are reported on the four different 
evaluation conditions mentioned in [23] and [24]. Word 
error rate (WER) is used as an evaluation metric.  
 
5.1. Corpora used for performance evaluation 
 
The AURORA-4 continuous speech recognition corpus, 
derived from the Wall Street Journal (WSJ0) corpus, has 14 
test sets grouped into the following 4 groups [22-23]: (a) 
Test set A - clean/multistyle speech in training and clean 
speech in test, same channel (set 1), (b) Test set B - 
clean/multistyle speech in training and noisy speech in test, 
same channel (sets 2-7), (c) Test set C - clean/multistyle 
speech in training and clean speech in test, different channel 
(set 8), and (d) Test set D - clean/multistyle speech in train-
ing and noisy speech in test, different channel ( sets 9-14). 
The number inside the brackets represents the test set num-
ber defined in the AURORA-4 corpus. 
 
5.2. Experimental setup 
 
For the continuous speech recognition task on the 
AURORA-4 corpus, all experiments employed state-tied 
crossword speaker-independent triphone acoustic models 
with 16 Gaussian mixtures per state. A single-pass Viterbi 
beam search-based decoder was used along with a standard 
5K lexicon and bigram language model with a prune width 
of 250 [16, 23]. The HTK [24]-based recognizer is used for 
training and decoding tasks. For our experiments, we use 13 
static features (including the 0th cepstral coefficient) aug-
mented with their delta and double delta coefficients, mak-



ing 39-dimensional feature vectors. The analysis frame 
length is 25 ms with a frame shift of 10 ms. The delta and 
double features were calculated using a 5-frame window. 
For all front-ends only static features were normalized by 
the feature normalization method and then dynamic features 
were computed from them. 
 
5.3. Results and Discussion 
 
Here, we considered both clean and multi-condition training 
to evaluate the performances of the following front-ends: 
RMFCC: robust mel-frequency cepstral coefficients 
NMFCC: normalized mel-frequency cepstral coefficients 
RRMCC: robust regularized MVDR cepstral coefficients 
NRMCC: normalized regularized MVDR cepstral  
               coefficients 
RMCC: regularized MVDR cepstral coefficients and 
MMFCC: multitapered spectrum estimator-based mel-
 frequency cepstral coefficients. 
For comparison the following front-ends are selected: 
PNCC: power normalized cepstral coefficients 
ETSI-AFE: The ETSI advanced front-end 
RCGCC: robust compressive gammachirp filterbank cep-
stral coefficients 
RGFCC: robust gammatone filterbank cepstral coefficients 
MFCC: mel-frequency cepstral coefficients 
Table 1 presents the WERs obtained by all feature extractors 
on the AURORA-4 corpus when the recognizer is trained on 
clean data and tested on all four test sets A, B, C, and D. It 
is observed from this table that low-variance spectrum esti-
mation-based cepstral features, e.g., MMFCC and RMCC, 
help to reduce the WERs. As mentioned in [25], the vari-
ance in the feature vectors has a direct bearing to the vari-
ance of the Gaussians modeling speech classes. In general, 
reduction in feature vector variance increases class separa-
bility and, thereby, decreases recognition word error rates. 
Robust feature extractors RMFCC, RRMCC, NMFCC, and 
NRMCC provided better recognition accuracy (i.e., lower 
WERs) compared to other front-ends. The NRMCC per-
formed the best among all front-ends presented in table 1.   
 

WER (%)  
A B C D Avg. 

1 MFCC 9.98 50.81 28.88 64.55 38.56 
2 MMFCC 10.06 45.98 19.89 56.38 33.08 
3 RMCC 9.94 45.75 21.77 59.37 34.21 
4 PNCC 11.36 30.15 18.93 40.00 25.11 
5 ETSI-AFE 11.41 30.42 20.48 38.49 25.20 
6 RCGCC 11.10 31.13 19.06 40.75 25.51 
7 RGFCC 11.06 31.53 19.30 40.61 25.63 
8 RMFCC 11.27 29.15 18.90 38.05 24.34 
9 NMFCC 11.97 27.37 17.97 35.91 23.31 
10 RRMCC 10.71 28.80 18.12 37.12 23.69 
11 NRMCC 11.38 26.78 17.53 35.88 22.89 

Table 1. Word error rates (WERs) obtained by different feature 
extractors on the four evaluation conditions of the AURORA-4 
task in clean training conditions (trained on clean data and evalu-

ated on clean as well as noisy data). The lowest WERs are high-
lighted in boldface. 

WER (%)  
A B C D Avg. 

1 MFCC 14.62 23.84 19.19 31.47 22.28 
2 MMFCC 15.15 24.12 18.17 30.50 22.02 
3 RMCC 13.81 23.81 17.53 30.45 21.40 
4 PNCC 15.29 25.81 17.86 31.33 22.57 
5 ETSI-AFE 14.55 23.32 18.31 29.68 21.47 
6 RCGCC 14.55 24.77 18.20 31.90 22.35 
7 RGFCC 14.99 25.41 17.97 31.31 22.42 
8 RMFCC 14.51 23.21 19.37 29.42 21.63 
9 NMFCC 15.21 22.69 17.94 28.49 21.08 
10 RRMCC 13.37 23.16 18.27 30.62 21.36 
11 NRMCC 15.58 22.28 17.94 28.23 21.01 

Table 2. Word error rates (WER) obtained by different feature 
extractors on the four evaluation conditions of the AURORA-4 
task in multistyle training condition (trained on (clean + noisy) 
data and evaluated on clean as well as noisy data). The lowest 
WERs are highlighted in boldface. 

When a multistyle training condition (i.e., training on (clean 
plus noisy) data and testing on all test data) is used, the 
WERs achieved by all the front-ends considered in this 
work are presented in table 2. The goal of multistyle training 
is to create matched training/test environments. Although it 
is expensive to obtain enough representation noisy data that 
can cover a wide range of noise types and signal-to-noise 
ratios, it is an effective method for mismatch compensation. 
On the average the MMFCC and RMCC features provided 
lower WERs compared to the MFCC in multistyle condi-
tions. From table 2 it is evident that the RMFCC, RRMCC, 
NMFCC, NRMCC, RMCC, and ETSI-AFE yielded lower 
WERs. In multistyle training mode the performance of the 
RMCC is comparable to that of the RMFCC, RRMCC, 
NMFCC, NRMCC, ETSI-AFE. Among all the features the 
NRMCC performed the best (provided lowest WER) both in 
tables 1 & 2. Comparing the performances of the RCGCC, 
RGFCC and RMFCC front-ends from both tables, it can be 
said that the triangular-shaped Mel scale filterbank-based 
robust feature extractor (RMFCC) performed slightly better 
than the gammatone and compressive gammachirp filter-
bank-based robust features. Use of the RMVDR spectrum 
estimator (reduces spectral variance) yielded a slight reduc-
tion of WER (when comparing NRMCC versus NMFCC) 
over the windowed periodogram estimates. Robust feature 
extractors helped to reduce WER both in clean and 
multistyle training mode, though in multistyle training mode 
the reduction in WER is not as huge as observed in the clean 
training mode.     

6. CONCLUSION 
 
In this paper, we presented several robust feature extractors 
and their performances were evaluated and compared with 
the ETSI-AFE and PNCC under clean and multistyle train-
ing modes on the AURORA-4 corpus. It is found that the 
Mel filterbank-based robust extractors performed slightly 
better, in terms of WER, than the gammatone and compres-



sive gammachirp filterbank-based features in additive back-
ground - channel mismatch environment. The normalized 
RMVDR-based cepstral coefficients (NRMCC) features 
outperformed all other features under clean as well as multi-
style training modes.  
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