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ABSTRACT 

 

The local sparsity property of frequency modulated (FM) 

signals stems from their instantaneous narrowband charac-

teristics. This enables their reconstruction from few random 

signal observations over a short-time window. It is shown 

that for linear FM signals, the sparsity of the local frequen-

cies is equal to the window length, thus adding another 

specification to the window selection requirements, beside 

the conventional temporal and spectral resolutions. Stable 

signal reconstruction within a sliding window depends on 

the underlying probability distribution function guiding the 

random sampling intervals. Both simulations and computa-

tional EM modeling data are used to demonstrate the effec-

tiveness of local reconstructions. We consider both mono-

component FM signals and multi-component signals, corre-

sponding to maneuvering targets and human gait Doppler 

signatures, respectively. 

 

Index Terms— Local sparsity, nonstationary signals, 

random under-sampling, time-frequency representation 

 

1. INTRODUCTION 

 

Compressive sensing (CS) has been studied extensively in 

many areas, including radar [1-5]. In CS, a sparse represen-

tation of a signal is projected onto a much lower dimension-

al measurement space. This leads, in general, to decreasing 

the data-acquisition requirements from time, logistic, and 

hardware complexity perspectives. In this regards, it is pos-

sible to record a small number of linear measurements of a 

signal and from those measurements reconstruct the com-

plete set of all samples that can be recorded conventionally 

[6].  If N is the ambient dimension of the signal, and K is the 

sparsity level, then the required number of observations, M, 

is slightly more than K, but far fewer than N. 

Nonstationary signals, such as FM signals, are locally 

sparse, owing to their instantaneous frequency characteris-

tics that render them instantaneously narrowband. However, 

because of their wideband nature, FM signals are not global-

ly sparse when a large data record is considered, as in the 

case of spectral analysis of stationary signals [7]. In this 

paper, we focus on sparsity induced by the small signal local 

frequency contents. Reconstruction of a large class of non-

stationary signals from few random observations can, there-

fore, benefit from the sparsity when these signals are only 

viewed through a short time window. In this case, N repre-

sents the total number of time observations, whereas K be-

comes the number of local multi-component signals. This 

number may change over different data segments leading to 

“time-varying” sparsity. The local frequency reconstruction 

is then poised to outperform global frequency reconstruction 

for the same frequency grid. Two classes of nonstationary 

signals are considered: 

1) FM signals which are ubiquitous in active sensing us-

ing several modalities, including radar, sonar, and ultra-

sound and are also adopted as interference and jamming 

signals to intended and non-intended receivers [8-10].   

2) MicroDoppler signals which are multi-component that 

exhibit significant changes in their structures over time. 

These signals are typically associated with radar returns 

from vibrating, oscillating, and rotating targets, and they 

commonly characterize human gait as well as sudden and 

short gross-motor motions [11-15]. 

In both classes, we deal with signals as deterministic ra-

ther than nonstationary random processes [16]. This paper 

differs from other recently published work on sparse recon-

struction using quadratic time-frequency signal representa-

tions [17-21]. Our contribution underlines the role of the 

sliding windows in the CS paradigm for nonstationary sig-

nals. Preprocessing of these signals for the purpose of sta-

tionarization prior to reconstruction is not considered. Ra-

ther, we use a short-time window which determines the level 

of sparsity and represents another specification that adds to 

the window temporal and spectral resolution requirements. 

For a chirp signal, the window length becomes equal to the 

corresponding local frequency sparsity captured within the 

window’s boundaries. Among possible models of random 

sampling [22], we consider the special case where the win-

dow length is longer than the maximum possible sampling 

interval. In this case, increasing the window length would 

reduce sparsity, but the average sampling frequency remains 

the same. 

Section 2 in this paper discusses local sparsity, whereas 

Section 3 includes window analysis and sparse reconstruc-

tions. Section 4 demonstrates, by simulations, local sparse 



reconstructions of both FM and micro Doppler signals using 

Orthogonal Matching Pursuit (OMP) technique. 

 

2. LOCAL SIGNAL SPARSITY 

 

An ideal time-frequency representation of a single FM sig-

nal shows:  

1) Sparsity in the two-dimensional (2D) time-frequency 

(TF) domain by the virtue of perfect power localization of 

FM signals, making it appear as a wavy line in a plane 

populated by zero values. As such, for a single FM compo-

nent, the joint-variable TF representation is N-sparse. 

2) Local frequency sparsity, where the intersection of a 

vertical time slice and the wavy line produces only one non-

zero value over frequency. This, in turn, establishes a K=1 

sparsity property.  

3) Time sparsity along a frequency slice where there is 

typically one or few nonzero values along the time variable, 

which amounts to K equals to, or slightly greater than one.   

The above three cases of sparsity are depicted in Fig. 1 

using a sinusoidal FM signal as an example. For multi-

component signals, where each component is defined by a 

frequency law, there would be more intersections points, 

leading to reduced sparsity compared to the single compo-

nent FM case. This is also illustrated in Fig. 1 with a chirp 

signal added to the sinusoidal FM. 

With non-ideal representations, the time and frequency 

slices are, respectively, replaced by short windows and 

narrowband filters, as depicted in Fig 2. In this case, sparsity 

is again reduced compared to the ideal case, due to the in-

clusion of consecutive time or frequency points. For micro-

Doppler signals, corresponding to human gross-motion 

activities, the frequency support of local sparsity has more 

than one frequency occupancy. The number and locations of 

those values may vary with the short time segment analyzed, 

with K typically exceeding one over most time segments. 

We focus in this paper on local frequency sparsity for dif-

ferent classes of signals using non-ideal representation, i.e., 

pursue short-time sliding window analysis and local fre-

quency reconstruction. 

 

3. LOCALLY SPARSE TIME-FREQUENCY 

REPRESENTATION 

 

To exploit the nonstationary signal local sparsity, we parti-

tion the data into overlapping segments and carry signal 

reconstruction over each segment separately. Let dn denote 

the reconstructed frequency representation corresponding to 

time n, [1, ]n N . This reconstruction can be written as the 

following optimization problem [23],  

 
1minimize || ||  

subject to =    

n

n n n

d

y A d
, (1) 

where yn is the windowed-observation vector, while matrix 

An represents a partial Fourier matrix.     

 
 

The rows of An are drawn from the rows of the N-

dimensional discrete Fourier transform (DFT) matrix. In this 

sense, it is an overcomplete dictionary with the matrix col-

umns representing a redundant DFT frame. The solution of 

(1) can provide one form of sparse time-frequency represen-

tation (SPTFR) D as, 

 1[ , ..., ].   ND d d   (2) 

It is important to note that the SPTFR is different from the 

short-time Fourier transform (STFT), and its magnitude 

square is not the Spectrograms. We use OMP algorithm for 

reconstruction, motivated by its suitability for large-scale 

applications. 

 

3.1. Sparsity level for mono-component signals 

 

We consider a class of chirps which are an important mem-

ber of FM signals. The slope in time-frequency plane is 

determined by the chirp rate. For a signal of the form, 

 
2 /2( ) jatx t Be , (3) 

the extent of the local frequency band, W, and therefore 

sparsity level, consists of all instantaneous frequencies cap-

tured by the window. These frequencies are determined by 

the window length T and the chirp rate a. For uniformly 

sampled discrete signals, the local frequency sparsity, which 

 
Fig. 1. Ideal time-frequency representation for given mono-

component and multi-component signals. 

 

 
Fig. 2. Spectrogram for given mono-component and multi-

component signals. 



represents the number of grid frequencies spanning the local 

frequency band, becomes  

 s waT N
K





 , (4) 

where Ts is sampling period, ∆ɷ defines the frequency grid 

density, and Nw is the window length in samples. The fre-

quency grid defines the desired resolution and, as such, is 

assumed fixed, independent of the window length.  It is 

noted that a reasonable choice of this grid spacing is the 

minimum frequency resolution achieved through Nyquist 

sampling of the entire signal. For the underlying class of 

chirp signals, the frequency spacing is given by 
 

 
saT  .  (5) 

Accordingly 

 ,wK N   (6) 

which simply means that the sparsity level is defined by the 

window length. The minimum number of local observations, 

M, needed for windowed chirp reconstruction can be ob-

tained through the well-known formula, relating N, M, K 

and some positive constant c [20], 

 logwM cN N .  (7) 

Note that in the above formula, M represents the number of 

measurements within one window.  

 For piecewise chirp signals or other mono-component 

signals different from linear FM, the sparsity within a win-

dow could be time-varying and depends on the sliding win-

dow position. For this case, one simple option is to estimate 

the maximum instantaneous bandwidth and then, proceed 

with the reconstruction using the window size and number 

of OMP iterations corresponding to this minimum sparsity. 

Another method, although more computationally demand-

ing, is to adapt window size and number of iterations for 

each time instant. 

 A specific case arises if we consider the ratio, β, of the 

missing samples to the total number N to be known, and if 

we assume that this ratio is preserved within each window, 

then the number of measurements within one window is 

given by, 

 (1 ) wM N   . (8) 

One structured sampling scheme satisfying (8) is to select M 

observations for the initial window position and then add 

either zero or a new observation as we shift the window one 

sample so as to maintain the ration fixed. According to (7) 

and (8), in order to have a successful chirp reconstruction, 

the percentage of samples available should satisfy the fol-

lowing relation: 

 1 logc N    (9) 

 Equation (9) can be put in context based on the random 

sampling interval and its probability distribution function 

P(τn=nTs). Only multiple integer n of the Nyquist sampling 

period is applied. In [22], several distributions of sampling 

intervals were considered for aliasing noise floor analyses, 

including exponential, uniform, geometric and binomial. 

Each of those distributions influences the choice of the ap-

propriate window size, and can be examined separately. 

Expression (9) represents a specific realization in which the 

window includes the maximum possible sampling interval. 

This renders the average sampling interval fixed within the 

window, irrespective of increased window size. In radar 

applications, this would amount to using a window length 

equal to or longer than any of the staggering pulse repetition 

periods. If we denote the maximum sampling interval as 

τmax, then  

 
max[ ( )]n w aveE N    ,  (10) 

where τave is the averaging sampling interval expressed as a 

function of window size. In this class of random sampling 

distributions, the condition for reconstruction becomes in-

dependent of the window size.  

 

4. SIMULATIONS 

 

This section demonstrates the performance of global and 

local reconstructions when applied to different types of 

signals. Global reconstruction is performed to produce 

SPTFR over the entire data record. We consider chirps and 

human gait microDoppler as representatives of mono-

component and multi-component signals, respectively. In 

order to verify the proposed approach, the data is first sam-

pled uniformly at Nyquist rate, and then thinned by discard-

ing some of the samples. When computing TF signal repre-

sentation, Hanning window is used.   

In the first example, we perform local reconstructions of 

chirp signal when 50% of Nyquistly sampled data are miss-

ing randomly. Chirp signal is of the following form 
264( )  where 1.j nx n e n 

 
The number of OMP iterations for local reconstruction is 

set equal to the window size, Nw=32, whereas for global 

reconstruction, we use the total signal length, N=256. The 

results are depicted in Fig. 3, and demonstrate the expected 

failure of global reconstruction due to the lack of sparsity. 

The local reconstructions for different window sizes are 

shown in Fig. 4. We can observe that the window size plays 

an important role in the reconstruction process. Increasing 

the window length compromises the assumption that signal 

is sufficiently sparse within the window, and as such yields 

improper and unstable reconstruction. Also, we include 

results corresponding to different percentages of Nyquist 

samples, namely from 10% to 90%. As a measure of suc-

cessful reconstruction, we use structural similarity index 

[24]. This index measures the similarity between two imag-

es. The maximum index value 1 corresponds to the case 

when two images are identical. We use the result when there 

are no missing samples as a reference image and compare it 

with the SPTFR. The results for different window sizes are 

shown in Fig. 5.  

The following remarks are in order:  



 
 

1) For few missing samples, the window size is irrel-

evant to performance; 

2) Large size windows, such as Nw =96, 128, capture 

corresponding large sub-bands, making K assume 

very high values and producing inferior results to 

their small size windows counterparts (Nw=32, 64). 

In the next example, we consider computational EM 

modeling data corresponding to a human walking straight 

toward a pulse-Doppler radar (which means 0° azimuth). 

Vertical polarization is considered. The radar operates 

around 1 GHz, with a bandwidth is 80 MHz. Also, we con-

sider a walking cycle takes 2 seconds. The EM solver, Finite 

Difference Time Domain (FDTD) is used.  Reference [25] 

includes more information on the data modeling generation. 

This modeling data differs from the experimental data used 

in [21], where the latter deliberately emphasized the arms 

more than the leg movements. We randomly remove 45% of 

data. Fig. 6 shows that global reconstruction fails once again 

to depict the torso and limbs movements.  

 

The local reconstruction resembles the Spectrograms 

with all uniformly sampled data available. This resemblance 

will lend itself to proper motion classifications under miss-

ing or random observations. 
 

5. CONCLUSION 

 

In this paper, compressive sensing is used to reconstruct the 

signal local frequencies, and thus provides the time-

frequency signatures of mono- and multi-component nonsta-

tionary signals. The proposed approach is based on the re-

construction of data within short overlapping time intervals 

defined by a sliding window. It was shown that the sparsity 

level is dependent on the applied window and is equal to its 

length when a chirp signal is considered. The paradigm of 

sparsity, number of observations, and window length was 

discussed and demonstrated by simulations and EM model-

ing examples involving both FM signals and human gait 

microDoppler radar returns. 
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(a) Spectrogram                                           (b) Global reconstruction                          (c) Local reconstruction 

 

Fig. 6. (a) Spectrogram obtained from data with no missing samples; (b) Global reconstruction; (c) Local reconstruction of human gait 

signal when 45% of data is missing. 


