
SHOT-BASED OBJECT RETRIEVAL FROM VIDEO
WITH COMPRESSED FISHER VECTORS

Luca Bertinetto, Attilio Fiandrotti, Enrico Magli

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino (Italy)

ABSTRACT
This paper addresses the problem of retrieving those shots
from a database of video sequences that match a query im-
age. Existing architectures match the images using a high-
level representation of local features extracted from the video
database, and are mainly based on Bag of Words model. Such
architectures lack however the capability to scale up to very
large databases. Recently, Fisher Vectors showed promising
results in large scale image retrieval problems, but it is still
not clear how they can be best exploited in video-related ap-
plications. In our work, we use compressed Fisher Vectors
to represent the video shots and we show that inherent cor-
relation between video frames can be effectively exploited.
Experiments show that our proposed system achieves better
performance while having lower computational requirements
than similar architectures.

Index Terms— video retrieval, video search, object re-
trieval, object search, SIFT descriptors.

1. INTRODUCTION

The widespread popularity of multimedia-enabled devices
has fostered the blooming of large collections of digital items.
As such collections grow larger, techniques for media search-
ing, indexing and retrieval capable to scale up to very big
databases are sought. For example, Internet video providers
such as YouTube are facing the challenge of efficiently serv-
ing users requests with appropriate video contents. To a
smaller scale, domestic users may want to easily dig into li-
braries of videos that they have collected over time. In this
paper, we consider a specific video retrieval problem, namely
retrieving those shots from a database of video sequences that
match a given query image; we refer to this as object retrieval
from video.

In their seminal Video Google paper [1], Sivic et al. pro-
posed an object retrieval architecture based on the Bag of
Words (BoW) model. Local features are extracted from a
subset of the video frames and represented as SIFT descrip-
tors. Then, using K-means, clusters of descriptors are cre-
ated, forming a vocabulary of visual words. As we will detail
in Section 2, images are represented as visual word frequency
histograms over the vocabulary. Nevertheless, in order to con-
tain the loss in terms of performance, it is required that the

vocabulary grows linearly with the number of frames in the
database, thus making such architecture unsuited to handle
large scale scenarios.

Conversely, Fisher Vectors (FV) showed promising re-
sults in large scale image classification and retrieval prob-
lems [2,3]. Image local descriptors are represented as a Gaus-
sian Mixture Model (GMM), where the Gaussians can be seen
as the conceptual equivalent of the visual words in BoW. The
number of Gaussians employed is orders of magnitude lower
than the number of visual words required by BoW to achieve
the same performance.

In this paper, we introduce a novel architecture for object
retrieval from video that improves over [1,4] in the following
aspects. i) The video is considered as a sequence of seman-
tically coherent segments, the shots, rather than as a simple
sequence of pictures. Within each shot, persistent descrip-
tors are tracked as to represent the video using relatively few
highly distinctive descriptors. ii) Shots are modelled via a FV-
based representation, where each FV is further compressed by
means of Principal Component Analysis (PCA). We compare
with a reference architecture similar to [1, 5] and we show
that the per-shot representation reduces offline learning time,
while compressing the vectors cuts down memory require-
ments, reduces query time and improves performance.

2. BACKGROUND

In this section, we overview the Video Google architecture
described in [1, 4]. It can be summarized as an initial offline
stage for the creation of a visual vocabulary, followed by an
online stage for the processing of the queries.

2.1. Offline stage

First, local features are detected in a subset of the frames
of the video database (the keyframes) and represented with
SIFT descriptors. Descriptors are clustered into K cen-
troids using the K-means algorithm, whose output is the set
V = {v1, . . . , vK} of 128-dimensional elements, which we
refer to as a vocabulary of visual words.

Second, each keyframe is represented with a K-bins his-
togram by mapping each descriptor extracted to its nearest
neighbour in V . TF-IDF [6] weighting is then applied to

Fig. 1. Complete pipeline of our proposed architecture. Dot-
ted line encloses the query stage described in Section 3.2.

the histograms to down-weight words that appear often in the
vocabulary and to promote words that are highly character-
istic of a specific keyframe. Eventually, each keyframe tf ,
f ∈ [1, F], is represented as a K-bins histogram and the re-
sulting collection of F histograms is represented as theK×F
matrix T = [t1, . . . , tF].

2.2. Online stage

The online stage is performed every time the user submits
a query image. Descriptors are extracted and a histogram-
based representation of the image is generated, mapping each
descriptor to its nearest neighbour in V . The histogram of the
query image is then TF-IDF weighted. Let tq be the K × 1
vector representing the query image histogram: we compute
the F × 1 score vector S> = [s1, . . . , sF] as

S = T >tq, (1)

where each value is the result of the inner product of tq and
tf . The higher the value, the more likely it is that the f -th
keyframe is similar to the query image, so sorting the score
vector is equivalent to sorting the keyframes in order of rele-
vance with the user query.

Finally, we would like to comment on the computational
complexity of the BoW model. In [1,4], the authors show that
the number of visual words used is a fraction of the number of
local descriptors. Therefore, the memory required to store V
increases with the database size, together with the time spent
during the online stage to map the new local descriptors to
the visual words. Therefore, since BoW model is inherently
limited in scalability, more compact and efficient retrieval ar-
chitectures are sought.

3. PROPOSED ARCHITECTURE

In this section, we describe the proposed architecture illus-
trated in Figure 1.

3.1. Shots representation

3.1.1. Shot segmentation

We choose to represent each video as a collection of shots,
where a shot is a sequence of frames that are coherent by con-
tent. The motivation behind this choice is twofold. First, it is
highly likely that the user wishes to detect in which shot the
query object appears, rather than in which particular frame.
Once the shot is identified, it is always possible to refine the
retrieval result to the frame level. Second, grouping local de-
scriptors at a shot-level allows to focus the representation on
the non-redundant information, as will be detailed in Section
3.1.3.

To detect the boundaries between consecutive shots, we
simply compare the sum of absolute differences of the color
histograms of two consecutive frames with a threshold value.
This first segmentation returns a subdivision of the video se-
quence in shots. Next, we apply the same segmentation pro-
cess to each shot, but with a lower threshold. The result is a
further subdivision of each shot: we consider as keyframe the
median frame in each group of frames found by this second
segmentation step.

3.1.2. Local features extraction and representation

For each keyframe we compute Hessian-Affine regions [7]
and we represent them via SIFT descriptors. Then, we con-
vert them to RootSIFT [8] first L1-normalizing them and then
computing the element-wise square root. Calculating the Eu-
clidean distance between RootSIFT is in fact equivalent to
calculating the Bhattacharyya distance with a Hellinger ker-
nel on standard SIFT, which was shown to yield better results
in several applications [8].

3.1.3. Feature tracking

Due to the temporal correlation between consecutive
keyframes, local descriptors tend to repeat themselves across
every shot, unnecessarily increasing the computational com-
plexity of the FVs generation process. Aiming to represent
each shot with the minimum amount of redundancy, we per-
form a per-shot tracking of local descriptors throughout the
video. The objective is to obtain a representation of the evo-
lution of local descriptors across a shot, called thread in the
following.

For each pair of consecutive keyframes ki−1 and ki within
a video shot of length L, i ∈ [2, L], for all the Ni local de-
scriptors dij , j ∈ [1, Ni], we compute the first and second
nearest neighbours and the respective Euclidean distances in

the local descriptors space, respectively: dij1, dij2, ∆i
j1 and

∆i
j2. If rj =

∆i
j1

∆i
j2
≤ θ, dij1 and dij are considered as a match.

The motivation behind this operation is explained in [9],
where the authors have studied the probability density func-
tion (PDF) of the ratio rj on several thousands of images.
They discovered that the PDF for correct matches signifi-
cantly differs from the one for incorrect ones, and that, in
general, incorrect matches tend to have a ratio near to 1.

Whenever a new match is obtained, dij1 is added to the
same thread of dij , otherwise dij1 is considered as a part of a
new thread. Finally, each thread composed by more than one
descriptor is represented as the mean of all the local descrip-
tors belonging to it. Doing so, the total number of local de-
scriptors used to represent a shot is significantly reduced. As
it will be illustrated in Section 4, this provides a significant
reduction of the time needed to compute the FVs. As a very
last step, the dimensionality of the threads is reduced from
d = 128 to d′ = 64 through PCA, as in [5] the authors show
that such reduction is not detrimental to the performance of
an image retrieval system.

3.1.4. The Fisher Vector representation of a shot

Borrowing the notation from [2], let X = {x1, . . . xN} be
the set of N descriptors representing all the threads in the
video database. The problem is to find the GMM of KG

multivariate Gaussians that best fits X . Solving this prob-
lem is equivalent to finding the set of d′-dimensional param-
eters λ = {w1, µ1, σ1, . . . , wKG

, µKG
, σKG

} that maximizes
the log-likelihood function

L{X|λ} =

N∑
n=1

log

KG∑
k=1

wkpk(xn|λ), (2)

that is we want to find parameter vector λ that maximizes the
likelihood that X was generated from a linear combinations
of KG multivariate Gaussian functions. This problem is it-
eratively solved by means of the Expectation Maximization
algorithm.

Then, let S = {s1, . . . , sT } be the set of RootSIFT de-
scriptors representing the threads of a shot: it can be described
according to the GMM model with the gradient vector

GSλ = ∇λ log p(X|λ). (3)

Intuitively, it describes the direction in which the model pa-
rameters should be modified to match the descriptors of the
shot considered. The FV representation is obtained by con-
catenating all the gradient vectors relative to the KG Gaus-
sians. For the details of how this gradient can be efficiently
computed, we refer the reader to [2] and [3].
In our experiments, we have verified that considering only the
gradients with respect to the Gaussians mean values µ yields a
more compact description with a negligible performance loss.

Therefore, in the following a FV representation of a shot is a
vector composed of D = KG d

′ elements.
Since regular patterns (e.g., the bricks of a wall) tend to

generate bursts of descriptors that can bias the model away
from those areas of the image that are of interest to the
user [10], we normalize each FV to reduce the impact of such
descriptors as f(z) = sgn(z)|z|0.5, as in [5]. Thereafter, each
FV is also L2-normalized, to guarantee that if one of the FV
of the database is used as a query, the best retrieved shot is
exactly the FV of the shot used as a query.

As a last step, we reduce the FVs dimensionality by means
of a further stage of PCA, as [5] shows that PCA-reduced FVs
exhibit smaller footprint with little performance penalty. Let
D = KG d′ be the length of a FV, the PCA compacts the
corresponding vector to D′ � D, where typical D′ lengths
generally lie between 128 and 1024. In some cases, PCA
compression even improves the performance, as we show in
Section 4.2.

3.2. Query stage

During the query stage, a set Q of d′-dimensional RootSIFT
descriptors is computed and a FV representation tq of the
query image is obtained with the same procedure described
above. Gradient vectors GQλ computed with respect to the
mean values µ of the GMM previously obtained are calcu-
lated and concatenated to create the FV representation. As a
last step, the FV is normalized and PCA-reduced to the same
size D′ of the FVs of the database.

Recalling the same notation used in Section 2.2, the
database of video sequences is represented by the matrix
T = [t1, . . . , tF], where F indicates this time the number of
shots in the database. In this context, T is a D′ × F matrix,
where each column is the FV representation of one of the F
shots in the database. Let tq be a vector of length D′ repre-
senting the FV of the query image: we obtain a scored list of
matching shots by means of the inner product S = T >tq .

The use of the inner product to compare two FVs is mo-
tivated by Perronnin et al. in [3], where they analytically il-
lustrate the analogies between FVs and the TF-IDF weighted
histograms of BoW model, proving the efficacy of the inner-
product as a measure of similarity.

4. RETRIEVAL EXPERIMENTS

In this section, we compare a FV-based architecture with a
reference based on a classic BoW model, described in Sec-
tion 2. Furthermore, we also consider several possible setups,
showing that our proposal, which adopts feature tracking and
compressed FV representation of the shots, achieves the best
results.

4.1. Experimental setup

The database of video sequences has been generated from the
full-length movie “Inside Job”, which is 109 minutes long.
We detected approximately 150000 frames, 1200 shots, 5000
keyframes and 6 millions of descriptors. By comparison, the
authors of [1] experimented with a subset of 48 shots account-
ing for about 10000 frames and 200000 descriptors extracted
from the movies “Run Lola Run” and “Groundhog Day”.
We experiment with 15 query images depicting objects, build-
ings and logos found in the movie, but taken from different
points of view and under different levels of illumination and
background cluttering. Most importantly, queries are com-
pletely unrelated with the database, as they have been picked
from the Internet. To our knowledge, such a database has
never been presented in a retrieval from video scenario, so we
will soon make it available. Conversely, in [1] the query im-
ages are taken from the very same movies used to build the
video database. While our preliminary experiments showed
that this latter approach enables better retrieval performance,
we believe that our procedure is not only more challenging,
but it also better reflects a possible real case scenario. Fig-
ure 2 shows an example query and a portion of the ranked list
of retrieved shots.

The considered architecture setups are evaluated using
mean average precision (mAP) as retrieval performance met-
ric, as it expresses both precision and recall. In addition to
this, also three cost metrics are adopted.
Learning time is the time required to track the features and to
represent the shots as compressed FVs. For the BoW model,
instead, it is represented by the time required to create the vo-
cabulary and to generate the histograms of visual words.
Query time is the time required to represent the query image
in the appropriate form (histograms of visual words or FVs)
and to return a ranked list of shots to the user. We do not ac-
count for the computation required to compute SIFT, as it is a
constant time that does not depend on the database size.
In-memory set represents the memory required to answer to
a query. For FV-based setups, it accounts for the GMM sta-
tistical parameters vectors and the FV representation of the
video shots. For BoW, it amounts to the visual vocabulary
plus the histograms.

4.2. Experimental Results

Figure 3 compares the mAP achieved by a FV-based architec-
ture against BoW as a function of the length of the represen-
tation of a single shot. Such length corresponds to the number
of rows of matrix T described in the previous sections. For
BoW, this value is equal to the number of visual words K,
while for the proposed architecture it corresponds to KG d′,
as no PCA-reduction of the FV dimensionality is considered
in this preliminary experiment. The figure clearly shows that
the FV-based architecture achieves the same mAP for a tenth
of the database representation size required by the reference.

Fig. 2. An example of the first 5 shots retrieved for one of the
query images. True positive matches are found in positions 1,
2 and 5. Notice how the false positive matches present very
similar visual patterns to the query image.

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 5000 10000 50000 100000

M
ea

n
av

er
ag

e
pr

ec
is

io
n

m
A

P

Shot representation length

FV NO-PCA
BOW

Fig. 3. Retrieval performance as a function of the length of
each shot representation.

Then, in Figure 4 we compare different setups of a FV-
based architecture. We report the mAP as a function of the
number KG of Gaussians for different degrees of FV com-
pression. Clearly, the performance increases with the num-
ber of Gaussians. Less intuitively, the figure shows that PCA
compression even increases the mAP at same values of KG;
e.g., for KG ≥ 512, PCA-512 compression boosts the mAP
by about 3%. This finding is coherent with the results of [5],
and confirms that FVs bear a lot of internal correlation that is
detrimental and that is removed by PCA.

Table 1 compares the computational requirements of the
architectures described so far to achieve a mAP of about 0.6.
BoW is affected by very large memory requirements and long
learning and query times, which grow with the number of vi-
sual words K. Moreover, since the Nearest Neighbour search
is responsible for most of the time spent during the retrieval
stage, K also drives the query time.

FV-based architectures exhibit much lower computational
time and smaller memory footprint at similar retrieval per-
formance. For KG=1024 and without PCA compression (FV
NO-PCA), all the costs considered are significantly reduced.

K or KG Shot representation length mAP Learning Time Query Time In-memory set
BoW 131072 131072 0.582 1600 min 4.6 s 1.2 GB
FV NO-PCA 1024 65536 0.625 51 min 0.079 s 319 MB
FV NO-PCA 512 32768 0.616 23.5 min 0.034 s 159 MB
FV PCA-512 512 512 0.634 24 min 0.029 s 2.8 MB
FV F.Tracking PCA-512 512 512 0.635 12 min 0.029 s 2.8 MB

Table 1. Computational and memory requirements of the evaluated architectures for comparable values of mAP. Our proposed
architecture (last row) exhibits lowest memory requirements thanks to FV compression and lowest learning time thanks to
feature tracking. Tests were performed on 16-cores Intel Xeon @2.90GHz.

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 32 64 128 256 512 1024

M
ea

n
av

er
ag

e
pr

ec
is

io
n

m
A

P

Number of GMM components KG

FV NO-PCA
FV PCA-256
FV PCA-512

FV PCA-1024
FV F.Tracking PCA-512

Fig. 4. Retrieval performance of different setups as a function
of the number of Gaussians KG.

Further reducing KG from 1024 to 512 compacts the shot
representation length, which is equal to KGd

′, thus obtain-
ing a GMM that is less complex to fit and a smaller matrix
T that is faster to query. The second to last row shows the
beneficial effects of PCA compression. When FV length is
reduced from D = KGd

′ = 32768 to D′=512, i.e., by a factor
of 64, the in-memory set decreases by the same amount and
the learning time increases of just about 30 seconds due to the
PCA compression. Finally, the last row presents the costs of
our proposed architecture. Together with Figure 4, it shows
that feature tracking is beneficial for the learning time and not
detrimental for performance.

5. CONCLUSIONS

In this paper we proposed a novel architecture for object re-
trieval from video based on a compressed Fisher Vector repre-
sentation of video shots. We analysed the problem as initially
introduced by [1], introducing and adapting the state of the
art in image retrieval to a video scenario. Our results demon-
strate that exploiting the natural correlation between consecu-
tive video keyframes, it is possible to significantly reduce the
computational time with no loss in terms of performance.

Acknowledgements
This work was supported by TELECOM Italia, research con-
tract 7010067123.

REFERENCES

[1] J. Sivic and A. Zisserman, “Video google: A text retrieval
approach to object matching in videos,” in Computer Vision,
2003. Proceedings. Ninth IEEE International Conference on,
2003, pp. 1470–1477.

[2] F. Perronnin and C. Dance, “Fisher kernels on visual vocab-
ularies for image categorization,” in Computer Vision and
Pattern Recognition, 2007. CVPR ’07. IEEE Conference on,
2007.

[3] F. Perronnin, Y. Liu, J. Sánchez, and H. Poirier, “Large-scale
image retrieval with compressed fisher vectors,” in Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-
ence on, 2010, pp. 3384–3391.

[4] J. Sivic and A. Zisserman, “Efficient visual search for objects
in videos,” Proceedings of the IEEE, vol. 96, no. 4, pp. 548–
566, 2008.

[5] H. Jégou, F. Perronnin, M. Douze, and C. Schmid, “Aggregat-
ing local image descriptors into compact codes,” Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, vol. 34,
no. 9, pp. 1704–1716, 2012.

[6] S. Robertson, “Understanding inverse document frequency:
on theoretical arguments for idf,” Journal of documentation,
vol. 60, no. 5, pp. 503–520, 2004.

[7] K. Mikolajczyk and C. Schmid, “An affine invariant interest
point detector,” in Computer VisionECCV 2002, pp. 128–142.
Springer, 2002.

[8] R. Arandjelovic and A. Zisserman, “Three things everyone
should know to improve object retrieval,” in Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on,
2012, pp. 2911–2918.

[9] G. Francini, M. Balestri, and S. Lepsoy, “Cdvs: Im-
proved image comparison by weighted matching,” ISO/IEC
JTC1/SC29/WG11 MPEG2011/M25795, 2012.

[10] H. Jégou, M. Douze, and C. Schmid, “On the burstiness of
visual elements,” in Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, 2009, pp. 1169–
1176.

