
A MULTI-CHANNEL POSTFILTER BASED ON THE DIFFUSE NOISE SOUND FIELD

Lukas Pfeifenberger1 and Franz Pernkopf1

1 Signal Processing and Speech Communication Laboratory
Graz University of Technology, Graz, Austria

lukas.pfeifenberger@alumni.tugraz.at, pernkopf@tugraz.at

ABSTRACT

In this paper, we present a multi-channel Directional-to-
Diffuse Postfilter (DD-PF), relying on the assumption of a
directional speech signal embedded in diffuse noise. Our
postfilter uses the output of a superdirective beamformer like
the Generalized Sidelobe Canceller (GSC), which is pro-
jected back to the microphone inputs to separate the sound
field into its directional and diffuse components. From these
components the SNR at the output of the beamformer can
be derived without needing a Voice Activity Detector (VAD).
The SNR is used to construct a noise cancelling Wiener fil-
ter. In our experiments, the developed algorithm outperforms
two recent postfilters based on the Transient Beam to Refer-
ence Ratio (TBRR) and the Multi-Channel Speech Presence
Probability (MCSSP).

Index Terms— beamforming, multi-channel postfilter,
diffuse sound field

1. INTRODUCTION

Speech intelligibility is a paramount issue in modern telecom-
munication systems. In many applications, background noise
is the primary source of speech degradation. While single-
channel speech enhancement systems require an inherent
trade-off between noise reduction and speech quality, multi-
channel speech enhancement systems also exploit the spatial
information of the sound field and, thereby achieve a better
performance. For this purpose, superdirective beamformers
like the Generalized Sidelobe Canceller (GSC) [1, 2] in con-
junction with multi-channel postfilters have gained the most
attraction over the last decade. In this paper we assume a
diffuse noise sound field, which can be found in a wide range
of applications, such as car interiors, subway stations or
roadside emergency telephones [3]. Further, we assume that
the speaker is located close to the array, resulting in strong
directional components in the Acoustic Transfer Functions
(ATFs). We therefore model the ATFs as simple time delays,
which can be identified by estimating the Direction of Arrival
(DOA) using one of the algorithms discussed in [4]. The
assumption of a diffuse noise sound field has already been
used in postfilter concepts like [3] and [5], where a Wiener

postfilter is derived from the speech and noise Power Spectral
Densities (PSDs) at the beamformer output. However, many
of these postfilters rely on a VAD and an accurate speech
PSD estimate. A comprehensive overview of these methods
is given in [6].

Our Direct-to-Diffuse Postfilter (DD-PF) algorithm es-
timates the SNR at the beamformer output by splitting the
sound field at the microphones into its directional and diffuse
components, using only the assumption of a diffuse noise
field. This approach is inspired by the Signal to Reverberant
Ratio (SRR) [7] and the multi-channel SNR in [8]. Other
approaches to multi-channel postfilters are, for example: the
Transient Beam to Reference Ratio (TBRR) [2], which relies
on the ratio of transient energies in the beamformer output
and in the output of the blocking matrix. These transient
energies are determined using noise floor estimates in both
the beamformer output and the blocking matrix outputs. The
Multi-Channel Speech Presence Probability (MC-SPP) [8]
algorithm can also be used without a beamformer, as it di-
rectly estimates the noise PSD matrix based on an a-priori
speech presence probability and recursive averaging. In a
similar approach given by [9], the SRR is mapped into a
speech absence probability (SAP) used for recursive noise
PSD estimation. Unlike these approaches, the performance
of our postfilter only depends upon target leakage in the
blocking matrix, and the diffuse noise field assumption.

This paper is organized as follows: Section 2 verifies the
assumptions about the sound fields. Section 3 introduces the
signal model and the beamformer. The DD-PF is derived
in Section 4. Section 5 presents the experimental setup and
performance results, where our postfilter is compared with
two other approaches: the TBRR [2] and the MC-SPP [8].
The performance and speech quality is evaluated by using the
Perceptual Evaluation Methods for Audio Source Separation
(PEASS) Toolkit [10, 11]. Section 6 concludes the paper.

2. VERIFICATION OF THE SOUND FIELDS

In our setup, we assume a hands-free telephone situated in a
noisy environment. In such a scenario, the speaker is located
much closer to the microphone array than the noise source(s).
Hence, a mostly directional speaker sound field and a diffuse



noise sound field is expected. To verify these assumptions,
we placedM = 4 microphones in a linear array with an inter-
microphone distance of d = 5 cm. The array is located in a
5 × 8 m wide hall with a RT60 ≈ 550 ms (see Figure 1).

Fig. 1. Setup with a linear array consisting of M = 4 micro-
phones at an inter-microphone distance of d = 5 cm.

To simulate the speaker, a loudspeaker is placed at a dis-
tance of 0.5 m at a DOA of 0◦ in front of the array. For the
diffuse background noise, a second loudspeaker is placed 5
m away from the array. Using the MLS technique for room
impulse measurement [12], it can be verified that the speaker
sound field has a strong directional component and the noise
sound field is mainly diffuse. Figure 2 shows the squared co-
herence for both scenarios. This result is similar to [3].

Fig. 2. Measurement of the squared coherence using the first
two microphones for the loudspeaker at the position of (a) 0.5
m and (b) 5 m.

3. SIGNAL MODEL

In Figure 1 we denote the ambient noise at the mth micro-
phone as nm(t), and the ATF from the speaker to the mth mi-
crophone as am(t). With these definitions, the signal model
can be written as zm(t) = am(t) ∗ s(t) + nm(t) in time-
domain. In the fourier-domain Zm(jΩ) = Am(jΩ)S(jΩ) +
Nm(jΩ). Covering all M microphones, the signal model can
be written in a more compact vector notation as

Z(jΩ) = A(jΩ)S(jΩ) + N(jΩ). (1)

While the proposed postfilter can be used in conjunction with
any beamformer, we used the GSC for both its robustness
and simplicity. It has been implemented as suggested in [2,
13, 14]. Its filter weights are given as W (jΩ) = F (jΩ) −
H(jΩ)B(jΩ), with the delay and sum beamformer F (jΩ),
the blocking matrix B(jΩ) and an adaptive interference can-
celer H(jΩ).

Due to the mainly directional speaker sound field encoun-
tered in Section 2, we modeled the ATFs as simple time de-
lays, i.e. Âm(Ω) = ejkdm sin Θ, where k = ω

c is the wave
number, dm is the distance between the mth microphone and
an arbitrary reference point [1], and c is the speed of sound.
Since the blocking matrix depends on the ATFs, target leak-
age might occur as a consequence of undermodeling, result-
ing in a degraded speech signal at the GSC output. However,
we found the signal blocking factor [15] to be about 16dB in
our experiments, which seems quite sufficient.

If the beamformer is steered towards the speech source,
e.g. Â(jΩ) ≈ A(jΩ), all sounds originating from that di-
rection are allowed to pass, since WH(jΩ)Â(jΩ) ≈ 1. This
includes the speaker signal, and the portion of the noise im-
pinging from that direction [1]. The beamformer output can
therefore be written as

Y (jΩ) = WH(jΩ)Z(jΩ)

= Ŝ(jΩ) + WH(jΩ)N(jΩ),
(2)

where Ŝ(jΩ) is the estimate of the speech source, and
WH(jΩ)N(jΩ) is the noise component coming from the
direction of the speaker.

4. MULTI-CHANNEL POSTFILTER

Our DD-PF algorithm estimates the SNR at the beamformer
output without the need for a speech PSD estimate or a VAD.
This is achieved by back-projecting the GSC output Y (jΩ) to
the microphone signals Z(jΩ) using the ATF model Â(jΩ),
we obtain

Ẑ ′ = ÂY = ÂŜ + ÂWHN ,

Ẑ ′′ = Z − Ẑ ′ ≈ [I − ÂWH ]N ,
(3)

assuming ÂŜ = AS. This assumption holds if the target
leakage in the blocking matrix is low. The frequency argu-
ment jΩ has been omitted for brevity. It can be easily seen
that Ẑ ′ denotes the directional signal components, and Ẑ ′′

the remaining diffuse components. Due to statistical inde-
pendence of the speech and the noise signal, the spatial PSD
matrices of Ẑ ′ and Ẑ ′′ can be written as

ΦẐ′Ẑ′ = ÂΦŜŜÂ
H + ÂWHΦNNWÂH

= ΦŜ′Ŝ′ + ΦN̂ ′N̂ ′ and

ΦẐ′′Ẑ′′ ≈ [I − ÂWH ]ΦNN [I −WÂH ]

= ΦN̂ ′′N̂ ′′ .

(4)



In [8], a multi-channel SNR as generalization from the single-
channel case was defined as ξ = Tr(Φ−1

N̂ ′N̂ ′ΦŜ′Ŝ′). Similarly,
we evaluate only the power ratio of the main diagonals of
these PSD matrices as

ξ =
Tr

(
ΦŜ′Ŝ′

)
Tr

(
ΦN̂ ′N̂ ′

) , (5)

because both PSD matrices ΦŜ′Ŝ′ and ΦN̂ ′N̂ ′ represent
purely directional sound fields. Additionally, we can cir-
cumvent the numerically ill-conditioned matrix inversion of
ΦN̂ ′N̂ ′ , caused by strong spatial correlations for low frequen-
cies. However, we cannot measure ΦŜ′Ŝ′ or ΦN̂ ′N̂ ′ directly,
but Eqn. (5) can be expressed as

ξ =
Tr

(
ΦẐ′Ẑ′

)
Tr

(
ΦẐ′′Ẑ′′

) Tr
(
ΦN̂ ′′N̂ ′′

)
Tr

(
ΦN̂ ′N̂ ′

) − 1. (6)

By assuming an ideal spherical diffuse noise sound field at the
microphones, the noise PSD matrix ΦNN can be written as

ΦNN = ΦNNΓNN , (7)

where ΦNN denotes the unknown PSD of the noise source,
and the elements of the spatial coherence matrix ΓNN are
defined as the coherence function [16] between the ith and the
jth microphone, i.e.

ΓNiNj (jΩ) =
sin(kdij)

kdij
, (8)

where dij is the distance between microphone i and j. Using

Eqn. (7), the ratio
Tr(ΦN̂′′N̂′′)
Tr(ΦN̂′N̂′)

in Eqn. (6) is obtained by

Tr
(
ΦN̂ ′′N̂ ′′

)
Tr

(
ΦN̂ ′N̂ ′

) =
Tr([I − ÂWH ]ΓNN [I −WÂH ])

Tr(ÂWHΓNNWÂH)
, (9)

using the ATF model Â and the beamforming filter W . The
coherence matrix ΓNN is a constant. The directional and
diffuse component of the input signal, Ẑ ′ and Ẑ ′′, are es-
timated online using Eqn. (3). Their respective PSDs are
found by recursive averaging, e.g. ΦẐ′Ẑ′,l = ΦẐ′Ẑ′,l−1α +

(1 − α)Ẑ ′Ẑ ′H , where l is the frame index. The SNR ξ is ob-
tained by using Eqn. (6). This SNR is then used to construct
a Wiener filter. We used the Optimally-Modified Log-Spectral
Amplitude Estimator (OM-LSA) algorithm [17], which is of-
ten found in noise cancelling applications.

5. EXPERIMENTS

5.1. Directivity Pattern

The proposed postfilter depends only on the current beam-
former state defined by Â and W . Therefore, the postfilter
can easily be incorporated into the overall Directivity Pattern

of the beamformer. The procedure described in [18] is used
to simulate the theoretical directivity pattern with a two ele-
ment array with d = 5 cm. The beamformer is fixed to look
towards 0◦. In comparison to the beampattern of the GSC
without a postfilter [4], Figure 3 demonstrates the improved
directivity especially for low frequencies.

To measure the real directivity pattern for comparison,
we used the room from Figure 1, and the array mounted on a
turntable. Figure 4 shows the measured beampattern for two
microphones. Especially for low frequencies, it is sharper
than the theoretical result. A cause for this effect could be
minor gain differences in the microphones, which are not
modeled by the simplified ATFs. However, it can be seen
that signals impinging from outside ±20◦ are completely
suppressed. Increasing the number of microphones up to four
did not change the directivity pattern significantly.

Fig. 3. Simulated directivity pattern for a two microphone
beamformer with an aperture of d = 5 cm.

5.2. Experimental Setup

To test the speech quality of our MCSE system against a
significant amount of speech data, the TIMIT [19], KCORS
[20], and (KCOSS) [21] speech corpora have been used. The
speech signals have been replayed with the loudspeaker at the
0.5 m position (see Figure 1). For the noise data, recordings
from various sources, e.g. traffic noise, industry parks, sub-
way stations and the NOIZEUS database have been replayed
with the loudspeaker at the 5 m position. In total, about 60
minutes of test material has been generated. For comparison,
we also implemented two other postfilter approaches – the
MC-SPP approach and the TBRR. For the GSC beamformer
we used a sparse blocking matrix B(jΩ), which has the same
performance as a dense eigenspace blocking matrix [22]. Its
main benefit is the linear growth of computational complexity



Fig. 4. Measured directivity pattern for 2 Audix-TM1 micro-
phones placed d = 5 cm apart.

with the number of microphones. All GSC filters are imple-
mented as non-causal FIR filters, to allow both positive and
negative time delays [1]. The sampling frequency is fs = 16
kHz and the SFFT length is 16ms, where we used a hanning
window and 50% overlapping frames.

The PEASS Toolkit [10, 11] is used to evaluate the per-
formance of the algorithms in terms of performance and per-
ceptual speech quality. While PEASS might not be intended
specifically for speech enhancement tasks, we found it rep-
resents the perceived speech quality much better than for ex-
ample PESQ. PEASS delivers four scores: The Target Per-
ceptual Score (TPS) measures the perceptual quality of the
desired speech signal contained in the postfilter output. The
Interference Perceptual Score (IPS) measures the influence of
the residual noise components in the beamformer output. The
Artifact Perceptual Score (APS) measures the influence of ar-
tifacts like musical noise generated by the algorithm. And
the Overall Perceptual Score (OPS) provides a global mea-
sure of the perceptual quality of the enhanced output. Each
score ranges from 0 to 100 and large values indicate better
performance.

5.3. Results

Each algorithm is tested with a signal-to-interference ratio
(SIR) ranging from -20 dB to +20 dB in 5 dB steps. Fig-
ure 5 shows the performance of the postfilters in terms of the
PEASS measures. The OPS score of the TBRR and the MC-
SPP postfilters are more or less equal. However, the TBRR
performs better than the MC-SPP for the IPS and TPS score,
and the APS score indicates that the TBRR introduces the
most artifacts. The MC-SPP algorithm has the lowest IPS
score, as it relies on the inversion of the spatial noise PSD

matrix which is numerically unstable at low frequencies due
to high signal correlations. The TBRR algorithm has the low-
est APS score, as it relies on recursive noise floor estima-
tion [23,24]. Depending on the instationarity of the noise, this
technique is known to introduce musical artifacts. The speech
quality of the proposed DD-PF does not depend on spatial
speech PSD estimation or a VAD, but only on the estimate
of the directional and the diffuse sound components ΦẐ′Ẑ′

and ΦẐ′′Ẑ′′ . Their accuracy is determined by the shape of the
assumed noise field and the target leakage in the blocking ma-
trix. In our experiments, target leakage was quite low, and the
noise sound field was nearly diffuse. Therefore, we achieved
both a good speech quality and a good noise suppression at
the same time, even for low frequencies. This can be seen by
the OPS and TPS score.

Fig. 5. Comparison of postfilters using PEASS measures; (a)
OPS, (b) TPS, (c) IPS and (d) APS.

6. CONCLUSIONS

In this paper, we introduced the Directional-to-Diffuse Postfil-
ter (DD-PF), which splits the sound field at the microphones
into its directional and diffuse components to derive the SNR
at the output of the beamformer, from which a noise reduc-
tion Wiener filter is derived. Unlike similar approaches, the
algorithm does not depend on spatial speech PSD estima-
tion or a VAD, but only on target leakage in the beamformer
and the diffuse noise field assumption. In our experiments,
these conditions have been sufficiently met. The achieved di-
rectivity pattern is selective even at low frequencies and the
speech quality is significantly higher compared to the TBRR
and MC-SPP approaches.
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