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ABSTRACT
A distinct family of nonlinear filters is presented. It is based

on a new formalism, defining a nonlinear transform based on

the TV-functional. Scales in this sense are related to the size

of the object and its contrast. Edges are very well preserved

and selected scales of the object can be either selected, re-

moved or enhanced. We compare the behavior of the filter

to other filters based on Fourier and wavelets transforms and

present its unique qualities.

Index Terms— Total variation, TV transform, spectral

TV, nonlinear filtering.

1. INTRODUCTION

Total-variation (TV) is the archetypical edge-preserving func-

tional. It is extensively used in image processing in the past

two decades, see e.g. [1–6]. Since its introduction in [1] in the

context of image processing many studies have been devoted

to its analysis and interpretation, e.g. [3, 4, 7, 8]. In [9, 10] a

non-conventional way of defining a transform through a non-

linear partial-differential-equation (PDE) was suggested.

Filtering based on transforms and spectral analysis has

been used extensively in the analysis and processing of sig-

nals modeled as stationary random processes (see e.g. [11,

12]). For more complex non-stationary signals, such as im-

ages and speech, harmonic analysis methods were developed

in the form of wavelets [13–15], spectral graph theory [16]

and diffusion maps [17]. In this work we further develop the

applicability of the TV transform to filtering in general and

band-pass filtering in particular, comparing it to more classi-

cal filtering techniques.

In [18] Steidl et al have shown the close relations, and

equivalence in a 1D discrete setting, of the Haar wavelets

to both TV regularization [1] and TV flow [19]. This was

later developed in 2D for a more restricted setting [20]. In

this work we show the conceptual resemblance of the TV-

transform to Haar-wavelet filtering, yet we observe the limi-

tations of the wavelet technique and show the superior results

obtained with the new TV-based method to obtain scale sepa-

ration and high quality filtering.
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lat Family.

This work relies on the established theory of the TV flow

proposed by Andreu et al in [19] and further developed in

[21–23] and the references therein.

1.1. TV functional and TV flow

The total variation functional is:

J(u) =

∫
Ω

|Du|, (1)

where Du denotes the distributional gradient of u. The total

variation scale-space, known as total-variation flow [19], is

formally written as:

∂u
∂t = div

(
Du
|Du|

)
, in (0,∞)× Ω

u(0;x) = f(x), in x ∈ Ω,
(2)

where Ω is the image domain (a bounded set in RN with Lip-

schitz continuous boundary ∂Ω) and f(x) is the input image,

Neumann boundary conditions are assumed.

2. THE TV TRANSFORM

In [9, 10] a nonlinear transform was defined, based on TV.

It was argued that many properties and intuitions, related to

classical transforms, remain valid also in this nonlinear set-

ting. To derive a meaningful nonlinear transform the follow-

ing requirements were set:

1. Certain spatial structures (“atoms” of the functional) are

transformed to impulses in the transform domain.

2. The inverse transform can recover any spatial signal

(within a defined space) from the transform domain com-

ponents.

3. Filtering can be applied in the transform domain by sim-

ple attenuation or amplification of the transform compo-

nents.

4. The spectrum represents significant scales of the image.

The TV transform is defined by:

φ(t;x) = utt(t;x)t, (3)



where utt is the second time derivative of the solution u(t;x)
of the TV-flow equation (2). The inverse transform is:

f(x) =

∫ ∞

0

φ(t;x)dt+ f̄ , (4)

where f̄ = 1
Ω

∫
Ω
f(x)dx is the mean value of the initial con-

dition. Finally, the spectrum S(t) corresponds to the L1 am-

plitude of each scale:

S(t) = ‖φ(t;x)‖L1 =

∫
Ω

|φ(t;x)|dx. (5)

Two significant results were shown in [10] for this trans-

form:

1. Atoms as eigenfunctions: Let f(x) be a function which

admits the nonlinear eigenvalue problem: pf = αf ,

where p ∈ ∂fJ is the subdifferntial of J(f), and α ∈ IR+.

Then the transform yields a single impulse, multiplied by

f(x), at some time t = td and is zero for all other t.

2. Relations to TV-flow: The TV flow solution u(t1;x) is a

specific low-pass filter in this framework.

The first result relates to nonlinear spectral theory [24], which

has attracted increasing interest lately, see e.g. [25]. The im-

plication is that for eigenfunctions of the functional we con-

struct filters with perfect reconstruction or suppression (“ideal

filtering”). This leads to very high quality separation of scales

in the image.

The second result shows that the framework is a general-

ization of standard TV filters and that many other new filters

related to the functional can be designed.

The TV-transform decomposition can be seen as a gen-

eralization and extension of earlier studies concerning image

decomposition methods, such as [4, 26, 27].

3. TV BAND-PASS FILTERING

Filtering is defined by a non-negative amplification function

H(t):
φH(t;x) = φ(t;x)H(t), (6)

The filtered response in the spatial domain is then the follow-

ing reconstruction procedure:

fH(x) =

∫ ∞

0

φH(t;x)dt+H(∞)f̄ . (7)

The scale size is proportional to the time parameter t. As

t grows, φ(t) contain coarser scale features. For the TV trans-

form, scale is a combination of contrast and spatial size. In

the case of a disk of radius r and height h, it can be shown

that t is linearly proportional to the radius multiplied by the

height: rh. Let us consider two disks i, j, which are well sep-

arated, each with radius and height ri/j , hi/j , respectively.

When the following condition holds:

rihi = rjhj ,
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Fig. 1. Simple example of separating mixed scales of stripes

using TV-based filtering.

j �= i, the disks are within the same φ(t;x) component.

Therefore, under this transform, they are considered to be

in the same scale. Other variations, for instance ones which

consider only spatial size and are contrast invariant, are being

investigated now.

A band of scales is therefore all scales within some range

[t1, t2], 0 ≤ t1 < t2 ≤ ∞. In the case t1 = 0 we have all

scales from the finest one, this reduces to a high-pass-filter.

In the case of t2 = ∞ we get all coarse scales (where the

∞ scale stands for the mean value of the signal) and thus the

filter reduces to a low-pass-filter.

In the general case, a band-pass-filter is strongly attenuat-

ing non-desired scales and maintains well the desired compo-

nents. For simplification we use the ideal band-pass-filter for

which each scale is either omitted completely or maintained

fully. A band-pass filter is defined as

HBPF,t1,t2(t) =

⎧⎨
⎩

0, 0 ≤ t < t1
1, t1 ≤ t < t2
0, t2 ≤ t ≤ ∞

(8)

A band-stop filter can be defined as the complement (any 0

becomes 1 and vice versa).

Nonlinear band-pass filters have not been employed fre-

quently in image analysis. However, they can reveal impor-

tant characteristic of the signal. They are able to extract sig-

nificant cues for classification which may be hidden under the
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Fig. 2. Extracting a well hidden pattern using different meth-

ods.

clutter of low and large scales and can serve to design new

types of image descriptors for medical and other purposes.

In the examples below we show some uses of band-pass fil-

tering, compare the proposed method to more classical ways

and discuss the method’s unique qualities.

4. EXAMPLES AND COMPARISON

In Fig. 1 we show a simple case of an input image with

stripes of several scales. We try to separate those scales into

3 components using TV-based low-pass-filter (LPF), band-

pass-filter (BPF) and high-pass-filter (HPF). We show the

Fourier band-pass analogue, which has similar qualities for

such repetitive signal. These transforms deviate considerably

for non-periodic signals.

In Fig. 2 we attempt to recover a well hidden pattern by

various methods. We use Fourier and two wavelet methods,

Daubechies 4 and Haar. It is interesting to see that Daubechies

4 cannot recover the pattern (we tried various bands) whereas

Haar is quite successful. Nevertheless, the extraction is not as

good as the proposed method. The features taken are smooth-
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Fig. 3. Extracting pattern - spectrum and some φ examples of

the proposed method.

ing of the absolute value of the band. In Fig. 3 the spectrum

and some φ instances are shown (note on the top middle the

φ’s containing the pattern).

In Fig. 4 large scale separation is shown. It is clear that

the proposed method can best isolate the different scales at

the best quality.

In Fig. 5 histology image (depicting Metaplasia) is shown

and its separation to different scales. Our assessment is that

different features and information can be analyzed more pre-

cisely in this manner. This should be verified experimentally

in future studies.

In Fig. 6 a leaf and its decomposition is depicted. At

the bottom right, a band-stop filter result is shown with both

coarse and fine scales, but with the middle scales extracted.

This may be useful when the middle scales obstruct or when

one wants to put the fine scale data within context.

5. CONCLUSION

The paper suggests the use of nonlinear band-pass filtering,

based on the TV-transform, for image analysis and represen-

tation. This allows significant information and signal cues,

often hidden under high contrast features, to be revealed.

The suggested method can separate and isolate image fea-

tures of different scales, in a well defined manner, without

intrinsic process parameters (no tuning needed). We have

compared the method to linear (Fourier) band-pass filtering

and wavelet-based methods. Although there is some com-

mon qualities of the TV-based method and the Haar-wavelets

approach, the proposed approach outperforms all methods in

terms of robustness and high quality separation. The method

can serve as a building block to extract features for machine-

learning algorithms and can serve in the design of new types



of image descriptors.
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Fig. 6. A leaf and its different scales.


