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ABSTRACT
In this paper, we examine the challenging problem of de-
tecting acoustic events and voice activity in smart indoors
environments, equipped with multiple microphones. In par-
ticular, we focus on channel combination strategies, aiming
to take advantage of the multiple microphones installed in the
smart space, capturing the potentially noisy acoustic scene
from the far-field. We propose various such approaches that
can be formulated as fusion at the signal, feature, or at the
decision level, as well as combinations of the above, also
including multi-channel training. We apply our methods on
two multi-microphone databases: (a) one recorded inside a
small meeting room, containing twelve classes of isolated
acoustic events; and (b) a speech corpus containing inter-
fering noise sources, simulated inside a smart home with
multiple rooms. Our multi-channel approaches demonstrate
significant improvements, reaching relative error reductions
over a single-channel baseline of 9.3% and 44.8% in the two
datasets, respectively.

Index Terms— acoustic event detection and classifica-
tion, voice activity detection, multi-channel fusion

1. INTRODUCTION

Acoustic event detection (AED) constitutes a research area
that has been increasingly gaining interest. Among others,
its application to smart space environments, such as homes
or offices equipped with multiple sensors including micro-
phone arrays, can reveal valuable information about human
and other activity, which can be useful to the development
of smart space applications. Moreover, detection of acous-
tic events can also improve performance of core speech tech-
nologies, such as automatic speech recognition (ASR) and
enhancement. AED, in general, aims to identify both time
boundaries and the type of the event(s) occurring.

Various AED approaches have been proposed in the lit-
erature, varying in the features employed and the detection
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and classification methods used [1–4]. However, most op-
erate on single-microphone audio input, with only a few ex-
ploiting information from multiple microphones. Among the
latter, in [5], outputs of support vector machines from each
channel are combined via majority voting for AED. Also,
in [6], channel decisions are firstly fused by averaging their
log-likelihood scores at each frame, and then an optimal path
of events is computed by the Viterbi decoding algorithm. Fi-
nally, in [7], decisions from different modalities are fused em-
ploying a fuzzy integral statistical approach to cope with the
problem of overlapping event detection.

Related to the above is the problem of voice activity de-
tection (VAD) that can be viewed as a special AED case with
two only classes of interest (speech, non-speech). VAD has
attracted significant research interest, due to its importance
to ASR and human-computer interaction. Among others, de-
veloped single-channel VAD systems employ energy thresh-
olding [8], statistical modeling [9], and discriminative front-
ends [10]. Concerning multi-microphone approaches, in [11],
majority voting is used to fuse single-channel VAD outputs,
while, in [12], homogeneity of time-delays between two mi-
crophone signals is exploited.

In our work, we address both AED and VAD problems
within a single framework, focusing on multi-channel ap-
proaches to exploit information from the available micro-
phones at various levels. In particular, we investigate channel
fusion at the signal level, employing beamforming techniques
to produce enhanced signals, at the feature level, utilizing
time-difference-of-arrival (TDOA) between channel signals
as additional informative features, and at the decision level,
appropriately integrating detection decisions to yield the final
one. Further, “multi-style” training is also considered, utiliz-
ing observations from all available microphones to produce
more robust models.

The above are investigated using two related detection
systems that are based on appropriately trained Gaussian
mixture models (GMMs) on traditional audio front-end fea-
tures. The first is a frame-based GMM that operates over
sliding windows of fixed duration, whereas the second em-
ploys Viterbi decoding over the entire observation sequence,



based on a hidden Markov model (HMM) composed of the
trained GMMs over the classes of interest. Experimental
results are reported on two multi-microphone corpora, one
containing isolated acoustic events of twelve types occurring
in a single room that is appropriate for AED, and a second
one containing speech and interfering noise simulated inside
a multi-room apartment, appropriate for VAD. In both cases,
multi-channel approaches are demonstrated to significantly
outperform single-channel baselines.

The rest of the paper is organized as follows: Section 2
presents the multi-channel methods for fusion and informa-
tion extraction; Section 3 describes details of the two detec-
tion approaches used; Section 4 is devoted to the experiments
and results; and, finally, Section 5 concludes the paper.

2. MULTI-CHANNEL INFORMATION
EXTRACTION AND FUSION

A number of channel combination approaches at different lev-
els are investigated in this paper, as discussed next.

2.1. Multi-channel training

In this approach, observations from all available micro-
phones, or from an appropriate subset of them, are used
during the training process in order to obtain the statistical
model (GMM) of each class of interest. This is akin to the
“multi-style” training procedure, often employed in ASR and
other machine learning problems to improve robustness of
the produced models. The obtained models can then be used
during testing on one or more microphones, in the latter case
using the decision fusion framework discussed below.

2.2. Signal fusion

In this approach, a plain delay-and-sum beamformer with no
post-filtering is employed to combine audio from multiple mi-
crophones into a single enhanced signal (typically, a subset of
the available microphones is exploited that are closely located
within microphone arrays). For this purpose, the “Beamfor-
mIt” software is used [13]. Depending on which channels are
combined, one or more beamforming signals can be created,
thus also allowing multi-channel training and/or decision fu-
sion approaches to be employed.

2.3. Decision fusion

In this approach, the available class models are tested on the
appropriate channels that are to be fused at the decision level.
Typically, for example, a single-channel classifier is tested on
the respective channel that it is trained on; a multi-channel
model is tested on any channel within the set of microphones
that is trained on; and a signal-fusion model is tested on its
corresponding enhanced signal. Such tests provide sequences
of log-likelihood scores for each class and channel of interest,
which are then fused at the frame level by one of the methods
described next.

2.3.1. Combination strategies

Unweighted log-likelihood sum (“u-sum”): For the current
feature frame, the sum of the log-likelihoods over all chan-
nels to be fused is computed for each class of interest, thus
providing the fused class log-likelihoods for this frame.
Weighted log-likelihood sum (“c-sum”): Similar to the above,
but with a confidence-weighted sum of the current frame log-
likelihoods over all channels computed for each class instead.
The weights are based on channel confidence estimates, cal-
culated as discussed later.
Global log-likelihood maximum (“u-max”): The channel
achieving the highest frame log-likelihood over all channels
and over all classes is the one chosen to provide all fused
class log-likelihoods at the current frame.
Global log-likelihood maximum confidence (“c-max”): The
channel with the highest confidence (computed as discussed
below) is the one chosen to provide all fused class log-
likelihoods at the current frame.
Unweighted majority voting (“u-vote”): At the current frame,
and for each channel, the class that ranks first, i.e., achieves
the highest frame log-likelihood score over the classes of in-
terest for the particular channel, obtains a vote of one (the
other classes obtain a vote of zero). The votes are summed
across all channels to be fused, and the class with the highest
score (number of votes) is chosen for the current frame.
Weighted majority voting (“c-vote”): As above, but with each
vote weighted by its corresponding channel confidence.

2.3.2. Confidence estimation

Approaches “c-sum”, “c-max”, and “c-vote” require channel
confidence estimation to yield necessary weights. Similarly
to [14], we utilize, for this purpose, the following channel
decision confidence or channel quality indicators.
N-best average log-likelihood difference: For every channel,
this is derived by computing the average of the differences
in the log-likelihood score between the highest scoring class
GMM and theN−1 following in descending order (whereN
is upper bounded by the number of available classes). Large
values of this difference indicate high confidence.
N-best average log-likelihood dispersion: This constitutes a
modification of the above, where log-likelihood differences
between all topN -scoring class pairs are averaged. As before,
large values demonstrate high confidence.
Log-likelihood score entropy: The entropy over the proba-
bility distribution of all class posteriors is computed. Small
entropy values indicate high classification confidence.
Segmental signal-to-noise-ratio (SNR): This is a commonly
used channel quality indicator, with high SNR values indicat-
ing good data quality.

After experimenting with the above channel confidence
indicators, we converged to using “segmental SNR” for AED
and the “2-best log-likelihood difference” for VAD, yielding
weights after their normalization over the channels fused.



2.4. Feature extraction

Regarding the features used, 13 MFCCs with ∆’s and ∆∆’s
were extracted from the single-channel or fused signal, over
25/100ms duration frames with a 10/20ms shift, for VAD and
AED, respectively. In addition, and similarly to [7], we em-
ploy as features TDOAs between pairs of adjacent micro-
phones, as these are related to the source location and pos-
sibly the class of certain acoustic events. Such features are
used to train a separate GMM, which is then combined with
MFCC-trained GMMs employing decision fusion.

3. DETECTION APPROACHES

Two detection systems are developed, employing at their core
the trained GMMs with multi-channel fusion.

3.1. Viterbi decoding over entire sequence

We denote by bmj(ot) the GMM log-likelihood score of
event j for the microphone-m at time frame t. In the single-
microphone case, using the Viterbi algorithm, the maximum
log-probability of observing vectors o1 to ot at microphone
m and being in state (event) j at time (frame) t is:

δmj(t) = max
i
{δmi(t− 1) + log(aij)}+ bmj(ot), (1)

where aij denotes the transition probability from state i to
state j. By adding a constant value on the diagonal of the
transition matrix , we can tune the flexibility of the decoder to
change states (state transition penalty).

To apply our decision fusion approaches using the Viterbi
decoding algorithm, we transform the above equation to use
the multi-channel log-likelihoods cj(ot) instead of the single-
channel bmj(ot). These multi-channel log-likelihoods are
produced using the fusion methods presented earlier, yielding

δj(t) = max
i
{δi(t− 1) + log(aij)}+ cj(ot). (2)

Majority-voting approaches cannot be used as above. Instead,
we can apply the majority-voting scheme at each frame t us-
ing the log-likelihood scores δmj(t) produced by Viterbi de-
coding for each microphone m.

3.2. GMM scoring over sliding window

In this approach, detection is performed by sequential clas-
sification over sliding windows of fixed duration and over-
lap. For a given time window and a microphone m, the log-
likelihood scores for each event are computed by adding the
log-likelihood scores of the individual observations o1, ..., oT

contained in that window: bmj(o1, ..., oT ) =
∑T

t=1 bmj(ot) ,
i.e., the observations are considered independent.

This procedure is performed for every model separately,
and then decisions are fused for each sliding window with the
methods aforementioned. Concerning the window length and
shift, we finally used 0.6/0.4s duration frames with 0.4/0.2s
shifts for AED and VAD respectively.

4. EXPERIMENTS AND RESULTS

4.1. AED

Concerning the AED task, development and evaluation of the
various approaches is performed on the UPC-TALP multi-
microphone corpus of acoustic events [15]. This database
contains a set of isolated acoustic events that occur frequently
in a meeting environment scenario. In our task, in addition to
silence, we have 12 different events in total: knocks (door, ta-
ble), door slams, steps, chair moving, spoon, paper work, key
jingle, keyboard typing, phone ringing, applause, cough and
speech. Audio data from a total of 24 channels are available,
provided by six T-shaped microphone arrays located on the
room walls.

As the UPC-TALP database recordings are divided into
8 independent sessions, experiments have been conducted in
a leave-one-out session fashion, keeping seven sessions for
training and leaving one for testing.

The results for the AED task are depicted in Table 1.
Performance of the various combination schemes considered
is reported in terms of DER (Diarization Error Rate) [16],
which in our case (isolated events) practically corresponds
to frame misclassification. The results presented correspond
to the best combination of parametres used (state transition
penalty, number of Gaussians). As a baseline in our experi-
ments, the “best estimated-SNR channel” selection strategy
(per session) has been considered. For a given session, the
SNR for each channel is computed as the ratio between the
total energy in the non-silence and silence segments detected.
In the “best actual-SNR” method, segment boundaries are
given from the ground-truth. In the “oracle best channel”
method in each session the channel with the lowest DER is
selected. Finally “average over channels” refers to the mean
DER of all the single channels results in the leave-one-out
experiment.

Concerning the results, at first we observe that Viterbi
decoding (HMM) outperforms the sliding window approach
(GMM). Regarding the decision-level fusion, we can observe
its superiority over the baseline systems.The best approach
is “c-sum” which achieves a 8.10% relative error reduction
(from 14.20% to 13.05%) compared to the best SNR single-
channel system.

The combination of decision fusion with multi-channel
training and signal fusion, yielded no improvement. Yet,
the results remained better than the single-channel baseline.
Finally, the combination of TDOAs with MFCCs GMMs
in the decision level obtained the best overall result (Table
2). In particular, the combination of TDOAs with the “u-
sum” method yielded a 12.88% DER, which corresponds to a
9.30% relative error reduction from the “best estimated-SNR
channel” approach (Fig. 1), and 11.20% from the “average
over channels” DER. This can be explained by the fact that
some events occur in similar locations in the various sessions.
The best combination gave weight equal to 0.1 to TDOAs



training single- multi- signal
style channel channel fusion

trained models (#) 24 1 6
channels tested (#) 24 24 6

model type GMM HMM HMM HMM
best estimated-SNR channel 18.54 14.20 14.59 14.53

best actual-SNR channel 18.43 14.16 14.43 14.48
average over channels 19.21 14.34 14.42 14.42

oracle best channel 17.50 12.71 13.04 13.40
u-max 18.94 13.76 14.19 14.37
u-vote 18.09 13.13 13.42 13.40

decision u-sum 17.91 13.21 13.36 13.50
fusion c-max 18.21 13.66 13.96 14.15

c-vote 18.12 13.17 13.50 13.78
c-sum 17.94 13.05 13.29 13.43

Table 1. Multi-channel fusion results for the AED problem. Results
are depicted in DER %.

TDOAs & MFCCs AED VAD
decision
fusion

u-sum 12.88 3.90
c-sum 12.92 4.00

Table 2. Results for the fusion of MFCC and TDOAs models for
AED and VAD tasks.

model and 0.9 to MFCCs model. Regarding the DER of
TDOAs model (without fusion) it reaches 36.64%.

In order to verify that the improvement observed by the
multi-channel approaches is statistically significant, we ap-
ply the Wilcoxon signed-rank test. In particular, a one-sided
Wilcoxon test [17] is performed to compare the detection
accuracies over all 8 leave-one-out experiments between the
various multi-channel approaches and the baseline system.
We also compare the significance of improvement between
weighted and non-weighted approaches.

The outcomes of the tests are positive using the value
p < 0.05. The improvements over the baseline observed
are judged as significant in most approaches (“TDOAs” , “c-
sum”, “u-sum”, “c-vote”, “u-vote”, “c-max”) (all except for
the “u-max” method). Also statistical significant improve-
ment was observed between “c-sum” and “u-sum” methods.
This indicates that the weighted approach performs slightly
but steadily better than the simple one.

4.2. VAD

We perform our VAD experiments in the DIRHA simulated
corpus [18] designed for the purposes of DIRHA project [19]
at FBK. This database contains speech commands and di-
alogs occurring in an apartment comprising 5 different rooms.
A big variety of acoustic events also can happen in differ-
ent locations of the apartment and often overlap with speech.
The audio data contains simulated recordings from 40 micro-
phones placed in the walls and ceilings of the rooms. In total,
150 simulations of 1 minute duration each were generated by
convolving pre-recorded data with the impulse response of
the apartment for different locations. In our experiments we

Fig. 1. Performance (in DER %) of baseline “best estimated-SNR”
and best multi-channel approach (“TDOAs & MFCCs”) for the 8
sessions of AED problem.

use 75 simulations for training and the rest for testing.
In the VAD task, we have experimented with the same

fusion schemes as in AED. Multi-channel training was per-
formed on each of the 5 rooms of the apartment. From the re-
sults in decision fusion (Table 3), we can immediately observe
the superiority of multi-channel approaches vs. the single-
channel case. Also, in this task, multi-channel training helped
increasing the performance of the system. Finally in the com-
bined system, non-negligible improvements are observed by
using the weighted approaches. This is not surprising, since
the employed channel confidence metric seems to provide a
good indication of its decision correctness, as depicted in Fig.
2.

The best result is obtained again with the combination
of TDOAs and MFCCs GMM models in the decision level.
It achieves a 44.84% relative detection error reduction (from
7.07% to 3.90%) compared to the “best estimated-SNR chan-
nel” and 52.55% from the “average over channels” method
(from 8.22% to 3.90%). Regarding the DER of TDOAs model
alone it reaches 23.02%.

The VAD task, has lower complexity than AED, as it con-
siders only 2 classes. Although, in our experiments, the en-
vironment of VAD problem was much more challenging than
that of AED, as it is comprises 5 rooms, and contains vari-
ous background noise sources overlapping with speech and
located in different positions of the apartment. This kind of
the environment revealed more the utility of multi-channel fu-
sion approaches.

In correspondence to the AED problem, we tested the sig-
nificance of the multi-channel approaches over the baseline.
Similarly with AED, the result was positive for all multi-
channel methods except “u-max” method. However, the im-
provements of weighted over non-weighted methods were not
judged as significant ones.

5. CONCLUSIONS

In this paper, we investigated multi-channel combination ap-
proaches in different levels for the problems of acoustic event
and voice activity detection. In both problems, and especially
in VAD, multi-channel approaches outperformed the baseline
single-channel system.



training single- multi- signal
style channel channel fusion

trained models (#) 40 5 14
channels tested (#) 40 40 14

model type GMM HMM HMM HMM
best estimated-SNR channel 7.93 7.07 5.45 4.85

best actual-SNR channel 5.32 4.08 4.30 4.04
average over channels 9.41 8.22 8.01 7.87

oracle best channel 3.52 1.67 1.57 2.11
u-max 11.01 9.74 10.24 10.06
u-vote 6.72 5.50 5.44 5.39

decision u-sum 6.24 4.28 4.38 4.55
fusion c-max 6.28 5.10 4.70 4.34

c-vote 5.97 4.97 4.84 4.83
c-sum 6.06 4.41 4.18 4.29

Table 3. Multi-microphone fusion results for VAD problem. Results
are depicted in DER %.

Concerning the back-ends used, we can observe that
Viterbi decoding is more appropriate for the detection task. It
finds the most probable sequence of events in an optimal way.
As for the decision fusion approaches, in general summation
methods work better than majority based ones, and weighted
better than unweighted ones. Finally, the extraction of the
TDOAs and the training of a separate GMM model with them
increased further the performance of the overall system.

Finally we must underline that the usefulness and contri-
bution of multi-channel approaches is better demonstrated in
larger environments and under more adverse conditions.

In future work, we will investigate the more general prob-
lem of overlapped acoustic event detection in noisy smart
home environments. We will also experiment with better con-
fidence metrics in order to improve further the performance of
the weighted decision fusion approaches.

Acknowledgments

The authors would like to thank Prof. C. Nadeu and the TALP
group at Universitat Politecnica de Catalunya (UPC) for the
free distribution of the UPC-TALP database. We would also
like to acknowledge Dr. M. Omologo and the SHINE group
at FBK for providing us with the simulated DIRHA corpus.

REFERENCES

[1] C. Zieger, “An HMM based system for acoustic event detection,” in
[16], pp. 338–344. Springer, 2008.

[2] M. Baillie and J.M. Jose, “Audio-based event detection for sports
video,” in Image and Video Retrieval, pp. 300–309. Springer, 2003.

[3] X. Zhuang, X. Zhou, A. Hasegawa-Johnson, and T. S. Huang,
“Real-world acoustic event detection,” Pattern Recognition Let.,
31(12):1543–1551, 2010.

[4] T. Butko, F. G. Pla, C. Segura, C. Nadeu, and J. Hernando, “Two-
source acoustic event detection and localization: Online implementa-
tion in a smart-room,” in Proc. EUSIPCO, 2011.

[5] A. Temko, C. Nadeu, and J.I. Biel, “Acoustic event detection: SVM-
based system and evaluation setup in CLEAR’07,” in [16], pp. 354–
363. Springer, 2008.

Fig. 2. Histograms of average value of confidence (2-best log-
likelihood difference) for both correctly and incorrectly classified
frames in the VAD problem. For each simulation and for each mi-
crophone we compute one value for mean confidence of erroneous
frames and one for correct frames.

[6] T. Heittola and A. Klapuri, “TUT acoustic event detection system
2007,” in [16], pp. 364–370. Springer, 2008.

[7] T. Butko, A. Temko, C. Nadeu, and C. C. Ferrer, “Fusion of audio and
video modalities for detection of acoustic events,” in Proc. INTER-
SPEECH, 2008, pp. 123–126.

[8] Q. Li, J. Zheng, A. Tsai, and Q. Zhou “Robust endpoint detection and
energy normalization for real-time speech and speaker recognition,”
IEEE Trans. on Speech and Audio Process., 10(3):146–157, 2002.

[9] T. Kinnunen, E. Chernenko, M. Tuononen, P. Fränti, and H. Li, “Voice
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