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ABSTRACT 

 

ISAR imaging based on the 2D linear prediction uses the l2 

norm minimization of the prediction error to obtain 2D 

autoregressive (AR) model coefficients. However, this ap-

proach causes many spurious peaks in the resulting image. 

In this study, a new ISAR imaging method based on the 2D 

sparse AR modeling of backscattered data is proposed. The 

2D model coefficients are obtained by the l2- norm minimi-

zation of the prediction error penalized by the l1 norm of the 

prediction coefficient vector. The resulting 2D prediction 

coefficient vector is sparse, and its use yields radar images 

with reduced side lobes compared to the classical l2- norm 

minimization.  

Index Terms— radar imaging, autoregressive model-

ing, linear prediction, sparsity, regularization 

 

1. INTRODUCTION 

 

An ISAR image represents a 2D spatial distribution of the 

scattering centers of an object to be imaged. Robustness to 

noise and clutter and insensitivity to relative aspect angle 

between the radar and the target makes ISAR images appro-

priate for identification applications. Conventional ISAR 

imaging uses polar format algorithm which is based on the 

2D inverse Fourier transform of the Cartesian frequency 

domain backscattered data. Unfortunately, the range resolu-

tion depends on the bandwidth of the radar while the cross-

range resolution depends on the aspect angle region. Thus 

for the limited data case where only narrow bandwidth and 

small aspect angle data is available, polar format algorithm 

yields poorly resolved images [1-3]. 

Subspace decomposition based spectral estimation tech-

niques such as MUSIC and AR have been widely used in 

the past to obtain high resolution images [2-4]. However 

these methods require the estimation of the covariance ma-

trix which tends to be ill conditioned for the limited data 

case and its eigenvalue decomposition. In MUSIC method, 

the ISAR image is obtained using the eigenvectors of the 

noise subspace. The performance of the method depends 

heavily on the distinction between the eigenvalues related to 

signal and noise subspaces. This distinction may not be 

obvious for complex targets which are characterized by a 

large number of scattering centers and additional processing 

may be required for their estimation. In AR based method 

the available data are modeled as a 2D autoregressive model 

and ISAR image is obtained by the 2D AR based power 

spectrum. A common way to estimate the model coefficients 

is to minimize l2-norm of the residual, the difference be-

tween the observed signal and the predicted signal, yields 

the well known linear least-squares problem which requires 

the inversion of the covariance matrix. However for high 

model orders, this matrix tends to be ill-conditioned result-

ing in many spurious peaks and high side lobes in the ISAR 

images. Although it is possible to refine these images by 

SVD truncation, this approach also needs a precise distinc-

tion between signal and noise subspaces. Moreover, SVD 

truncation while decreasing the background side lobes, leads 

to a decrease in the dynamic range of the ISAR image re-

ducing the distinction of the target from the background 

areas [1]. 

Recently, regularization methods with sparsity prior using 

l0-norm penalty functions have found many applications 

[5,6] . Since l0-norm minimization is a NP hard problem, it 

can be approximated by the use of 1-norm as penalty func-

tions which produces sparse results with few number of 

non-zero coefficients. Regularization problems which in-

volve l1-norm penalty functions are not differentiable, thus 

unlike l2-norm case they do not have a closed form solution, 

but they can be transformed into convex quadratic problems 

and solved by convex optimization methods. In [6] the spar-

sity based regularization of AR models is used in the 

framework of linear prediction of speech signals. The au-

thors defined sparse AR models by including l1-norm penal-

ty or sparse residuals by l1-norm minimization of the resi-

dual. In this work, we extend their results to the 2D AR 

modeling and apply to ISAR image formation problem. 

The paper is organized as follows. Section 2 reviews ISAR 

imaging using 2D linear prediction, section 3 introduces 

sparse linear predictors obtained by sparsity based regulari-

zation. In section 4 several results for both simulated and 

experimental targets are presented. The proposed method is 

compared with conventional l2-norm minimization as well 

as SVD truncation.  General conclusions are given in section 

5. 

 

 

 



2. PROBLEM FORMULATION 

 

The received echo signal from a target consisted of d scat-

tering centers at frequency  �� and aspect angle ��(� =0,1, … . . , 
 − 1, � = 0,1, … . . , � − 1) can be given as [2], 

 �(��, ��) = ����, ��� 
+���

�

���
exp  −! 4#��$ (%� cos � + )� sin �), 

(1) 
 

 

Where  �� is the amplitude of the kth scattering center, %� 

and  )�  are the coordinates of the kth scattering center,  �(��, ��) is the additive Gaussian noise with zero mean and 

variance  -. and $ is the speed of the light. In order to ob-

tain a focused ISAR image, one can transform the frequen-

cy-aspect data  )(��, ��) to spatial frequency domain (�/, �0) using the relations 

�/ = 2�$ cos � (2.a) 

 

and 

 

�0 = 2�$ sin � (2.b) 

 

 

After polar formatting (1) can be expressed as, 

 

�(�, �) = ��� exp 2−!2# 3%��/(�) + )��0(�)45
�

��� + �(�, �) 
(3) 

 

 

With �/(�) = �/(0) + �∆�/													� = 1,2, … . . , � �0(�) = �0(0) + �∆�0													� = 1,2, … . . , 
 

 

Where  �/(0) and  �0(0) are the starting values of �/ and �0, 

respectively. � and 
 are the number of interpolated data 

samples. Using 2D linear prediction, measured field at a 

Cartesian frequency  (�/, �0) can be predicted using quarter-

plane models [2] as, 

 

1st quadrant (forward prediction in both  �/ and �0) 

 

�8�(�, �) = − � ��9:�(; − <, � − !)
=

:�>

=

9�>9�:?>
 (4) 

 

 

3rd quadrant (backward prediction in both 	�/ and �0) 

 

�8@(;, �) = −���A9:
=

:�>

=

9�>
�(; + <, � + !) (5) 

< = ! ≠ 0 
 

Since �9: = �9:∗ , (5) can be written as, 

 

										�8@∗(�, �) = −���9:�∗(; + <, � + !)	
=

:�>

=

9�>
 (6) 

< = ! ≠ 0 
 

By combining (4) and (6) one can obtain, 

 									DE = −F (7) 

 

Where  D is a 2(
 − G). by (G + 1). − 1 matrix, a is a 

vector of length  (G + 1). − 1 and F is a vector of length 2(
 − G).. The prediction coefficient vector by the least-

square solution of (7) as [2], 

 

           E = −(DHD)I�DHF (8) 

 

Similarly,  using 2nd and 4th quadrant models which consist 

of using backward and forward prediction on either of �/ 

and �0, a second set of equations can be obtained as, 

 

          DJK = −FA (9) 

 

Where DJ is a 2(
 − G). by (G + 1). − 1 matrix, b is a 

vector of length  (G + 1). − 1 and FA  is a vector of length 2(
 − G).. Finally the radar image, ie.  locations of the 

scattering centers, is  given by the peaks of 

 L(%, ))
= 1
M1 + ∑ ∑ �9:=:�>=9�> O�I9O.I:M. + M1 + ∑ ∑ P9:=:�>=9�> O�I9O.I:M. 

(10) 

< = ! ≠ 0 
 

With  O� = exp	(! QRS ∆�/%) and O. = exp	(! QRS ∆�0)) for  

− S
∆T < %, ) < S

Q∆T. 

Since the radar image has more peaks than the scattering 

centers, SVD can be used to eliminate the spurious peaks. 

However, this method needs the consuming eigenvalue 

decomposition and estimation of the scattering center num-

bers for the cases where the distinction between the eigenva-

lues is not obvious. 

 

3. REGULARIZED LINEAR PREDICTION 

 

Using eqns. (7) and (9), two prediction errors can be defined 

as, 

 										FVIW = DJK + FA  (11.b) 

  



										FXIY = DE + F (11.a) 

 

The calculation of prediction coefficients may be thought as 

an optimization problem which consists of finding the pre-

diction coefficients using a set of observed complex signals 

so that the prediction error is minimized. The resulting mi-

nimization problem may be stated as, 

 E = minE ‖FXIY‖\\ + ]‖E‖�� = 

min^ ‖DE + F‖.	. + ]‖E‖�� 
(12.a) 

 K = minK ‖FVIW‖.. +]‖K‖��
= minK _DJK + FA_.. + ]‖K‖�� 

(12.b) 

 

Where ‖`‖\ is the lp-norm defined as, 

 

‖`‖\ = (�|%(�)|\
b

���
)� \			Tcd	\e�f

 (13) 

 

And ] is the regularization parameter considering  g = 2 

and ] = 0 will lead us to the classical least-square solution 

[5,6]. As it is mentioned in the preceding section l2-norm 

minimization approach has several issues, especially for 

high orders many spirous peaks appear requiring the use of 

SVD.  

It is possible to induce the sparsity constraints on the predic-

tion coefficients to obtain l1-norm regularized least-square 

solution as, 

 											E = minE ‖DE + F‖.. + ]‖E‖�� (14.a) 

 

											K = minK _DJK + FA_.. + ]‖K‖�� (14.b) 

 

We should mention that sparseness is often measured as the 

cardinality, ie. l0-norm ‖�‖>. Therefore, by defining the 

prediction coefficients as in eqn. 14.a and 14.b, we would 

like to minimize the number of non-zero prediction coeffi-

cients. Since this is an NP hard problem, general approach is 

to use more tractable l1-norm ‖P‖� . The minimization 

problems b can be efficiently solved using optimization 

packages such as cvx or l1-magic [7]. 

 

3.1. Selection of the regularization parameter 

The regularization parameter ] controls the tradeoff between 

the sparsity of the predictor and the sparsity of the residual. 

We have used the Lcurve method for the determination of 

the ] parameter [8]. Lcurve is a log-log plot of the regula-

rized solution against the squared norm of the regularized 

residual for a range of values of the regularization parame-

ter. The optimal value of ] is calculated as the maximum 

curvature of the curve (‖DE + F‖\\	, ‖E‖��). 
 

4. EXPERIMENTAL RESULTS 

 

The proposed method is applied to simulated and experi-

mental data downloaded from [9,10]. The radar images 

obtained using l2-norm minimization, l2-norm minimization 

with SVD truncation as well as noisy data results have been 

included for comparison purposes. 

Simulated data “mig25” have the following specifications: 

central frequency cf = 9GHz, bandwidth B =531 MHz, 

view angle Ω =3.67 ̊, data size is 64x64 pixels. The predic-

tion order is chosen as G = 25	for all methods. 

 
Figure 1. ISAR images using a) polar-format algorithm,     

b) l2 minimization c) l2 minimization with SVD truncation, 

d) proposed l2 minimization with l1 penalty, λ=1.0 

 

Fig1. shows the resulting ISAR images for classical Fourier 

transform based polar format algorithm,  l2-norm minimiza-

tion, l2-norm minimization with SVD truncation and  l2-

norm minimization with l1-norm penalty function, respec-

tively. The regularization parameter is chosen as λ=1.0 

As it is seen in Fig1.a polar format algorithm result has poor 

resolution and high sidelobes. The classical l2-norm mini-

mization showed in Fig1.b yields images with very high 

lobes in the background area. It is possible to reduce the 

amount high lobes using SVD truncation as shown in Fig1.c 

The regularization approach based on and l1- norm penalty 

provides clearer images as shown in Fig 1.d. The use of l1-

norm penalty decreases spurious peaks and gives a smoother 

background region. 

 

Since SVD truncation depends on the distinction of the 

small and large eigenvalues or on the knowledge of scatter-

ing centers number, its performance may be affected for 



realistic targets with large number of scattering centers. Fig 

2 shows clearly the effect of the choice of large eigenvalues 

on the results. As expected a large choice of scattering cen-

ters results in images with high sidelobes wherein a small 

choice may lead to the underestimation of the scattering 

centers. 

 

 
 

Figure 2. Radar images obtained using a) polar-format 

algorithm and radar images using l2-norm minimization 

with SVD truncation with modelling level 25 and number of 

scattering centers b) 30, c) 50, d) 70, e) 90, f) 110 

 

The impact of regularization parameter can be observed 

from Fig 3. A small choice approximates the l2- norm mi-

nimization while a large choice decreases the resolution. 

 

 
 

Figure3. ISAR images for mig25 data using a) polar-format 

algorithm,the proposed method with regularization parame-

ters b) λ =0.001, c) λ =0.1, d) λ =0.5, e) λ =1, f) λ =4 

 

All the methods have also been applied to the experimental 

“esairbus” data of [10] with the following specifications: 

central frequency 
cf  = 4 GHz, band width B =122MHz, 

view angle Ω = 2.08 ̊; number of scattrer is 20, data size 

32x32 pixels. The prediction order is chosen as 12. 

 

 
 

Figure 4. ISAR images using a) polar-format algorithm, b) 

l2-norm minimization c) l2-norm minimization with SVD 

truncation, d) proposed l2-norm minimization with l1-norm 

penalty, λ=0.5 

 

Fig 4 shows the resulting radar images for polar format 

algorithm, conventional l2 norm minimization, l2-norm 

minimization combined with SVD truncation, and the pro-

posed l2-norm minimization  with l1 norm regularization  

methods with λ=0.5. As in the previous example, l2-norm 

minimization with SVD truncation and the proposed method 

have been able to decrease the high sidelobes observed in 

classical l2-norm minimization. However, unlike our me-

thod SVD trunctation result has a decreased dynamic range 

and scattering centers are more obvious in the proposed 

method’s result. 

 

An additive white Gaussian noise (AWGN) at a signal-to-

noise ratio (SNR) of 10 dB is added to the phase history data 

to compare the performance of the methods mentioned 

above. The ISAR images obtained for the low quality data 

can be seen in Fig 5.And Fig.6. As expected, all the results  

have been deterioriated for the noisy case, especially l2-

norm minimization based ones, however the proposed me-

thod presents better results compared to them. Again, simi-

lar to the simulated data case, the dynamic range of the 

proposed method is higher compared to the l2-norm mini-

mization with SVD truncation and the distinction of the 

scattering centers from the background is better. 

 



 
 

Figure5. ISAR images for mig25 data using a) polar format 

algorithm b) l2-norm minimization (modeling level=20), 

c) l2-norm minimization with SVD truncation (modeling 

level=20 and number of scatterers=70), d) l2- norm minimi-

zation with l1-norm penalty function (modeling level=20) 

with λ=4.0 (S/N=10dB) 

 

 
 

Figure6. ISAR images for esairbus data using a) polar for-

mat algorithm b) l2-norm minimization, c) l2-norm minimi-

zation with SVD truncation (number of scatterers=20),  

d) l2- norm minimization with l1-norm penalty function 

with λ=0.5 (S/N=10dB, modeling level=10) 

 

5. CONCLUSIONS 

A new high resolution ISAR imaging method based on the 

2D regularized linear prediction is presented. Unlike the 

classical l2-norm minimization, the 2D AR coefficient vec-

tor is found by the minimization of the new cost function 

including a l1-norm penalization term. Since the optimiza-

tion problem do not have a closed form solution, we have 

used an optimization package in the minimization step. The 

resulting coeffient vector is sparse and yields radar images 

with reduced spurious peaks, thus reduced side lobes. The 

choice of scattering centers is not crucial as in l2-norm mi-

nimization with SVD truncation where a large number 

choice leads to the loss of some scattering centers or to the 

ineffective decrease of the spurious peak levels. Results of 

the simulated and experimental targets show that the pro-

posed method gives enhanced radar images with higher 

dynamic ranges which are expected to increase the classifi-

cation rate in the target recognition application. Current 

research is focused on this subject. 
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