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José M. Bioucas-Dias(1), Deborah Cohen(2), and Yonina C. Eldar(2)

(1) Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Portugal
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ABSTRACT

The estimation of covariance matrices from compressive
measurements has recently attracted considerable research
efforts in various fields of science and engineering. Owing
to the small number of observations, the estimation of the
covariance matrices is a severely ill-posed problem. This
can be overcome by exploiting prior information about the
structure of the covariance matrix. This paper presents a class
of convex formulations and respective solutions to the high-
dimensional covariance matrix estimation problem under
compressive measurements, imposing either Toeplitz, sparse-
ness, null-pattern, low rank, or low permuted rank structure
on the solution, in addition to positive semi-definiteness.
To solve the optimization problems, we introduce the Co-
Variance by Augmented Lagrangian Shrinkage Algorithm
(CoVALSA), which is an instance of the Split Augmented
Lagrangian Shrinkage Algorithm (SALSA). We illustrate the
effectiveness of our approach in comparison with state-of-
the-art algorithms.

Index Terms— Covariance matrix estimation, compres-
sive acquisition, alternating optimization, SALSA

1. INTRODUCTION

Numerous applications in machine learning, economics and
financial time series analysis, optics, communications, re-
quire estimation of the signal statistics, especially its covari-
ance, rather than the signal itself. In certain circumstances,
when the number of measurements is too small, the signal
cannot even be recovered. Oftentimes, covariance matrices
have structure that can be exploited for their recovery, which
is not necessarily the case for the signals themselves. Further-
more, the averaging performed in evaluating the statistics can
lead to improved performance in noisy environments over
sparse recovery techniques applied directly to the signals.

In this paper, we are concerned with the estimation of
covariance matrices under compressive measurements [1, 2].
This problem is severely ill-posed and calls for some form of
prior information imposing constraints on the estimated co-
variance matrices and thereby improving the conditioning of
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the inverse problem. Representative forms of prior informa-
tion are a) stationarity, which leads to Toeplitz covariance ma-
trices [3], b) diagonal covariance [4, 5], c) sparsity either on
the covariance [6–8], its inverse [9–11], or its Fourier trans-
form [3–5] d) null-pattern (e.g., banded matrices) [12], e) low
rank [13, 14], and d) Kronecker product [15, 16].

A popular approach to perform covariance matrix estima-
tion under prior constraints is to turn it into a vector recovery
estimation problem, by use of Kronecker products and vec op-
erators [3–5]. The vector containing the unknown correlation
values can then be recovered from the resulting set of linear
measurements using constrained linear estimation methods.
Although popular, this approach has two notable drawbacks.
The first is that in general the use of the Kronecker product en-
larges the dimensionality of the problem, increasing the com-
putational complexity. The second, and more important, is
that in vector form, some of the structure of the problem is
lost. In particular, it is difficult to enforce positive semidefi-
niteness of the covariance matrix in this form. Thus, the vec-
tor approach typically ignores this constraint, and the result-
ing estimated covariance values do not necessarily lead to a
valid covariance matrix. By taking into account the fact that
any covariance matrix must be positive semidefinite, we can
improve recovery ability and obtain satisfactory performance
even from a small number of compressive measurements.

In order to properly exploit prior information in covari-
ance estimation we introduce a class of convex formulations
and respective solutions to the high-dimensional covariance
matrix estimation problem under compressive measurements.
We consider the following types of covariance structure: a)
Toeplitz, b) sparseness, c) null-pattern, d) low rank, and e)
low permuted rank. We also constrain the covariance matrix
to be positive semidefinite. All formulations yield semidef-
inite programs which we solve effectively with an instance
of the SALSA algorithm [17] herein termed CoVariance by
Augmented Lagrangian Shrinkage Algorithm (CoVALSA).
We note that the work [25] addresses conditions under which
unknown sparse matrices observed in the compressed regime
may be recovered exactly and efficiently using a convex pro-
gram. In this paper, we are also concerned with matrix recov-
ering from compressive measurements. We consider, how-
ever, a different problem scenario concerning 1) the optimiza-
tion variables, which are covariance matrices to be inferred
from sample covariance counterparts, and 2) the classes of
regularizers/constraints considered.



Our approach is based on the alternating method of mul-
tipliers (ADMM), adapted to our setting. CoVALSA has two
distinctive features: a) it allows to solve a number of disparate
problems in a highly flexible and unified framework, and b)
it has complexity of O(n3) per iteration for covariance matri-
ces of size n, which is much smaller than O(n6 log(1/ε)) of
the interior point methods (e.g., SeDuMi and SDPT3) widely
used to solve small scale semidefinite programs. In compari-
son to the popular Kronecker-based vector formulation, it re-
sults in problems of smaller dimension and yields improved
performance particularly in low signal to noise ratio (SNR)
regimes.

The paper is organized as follows. Section 2 formulates
the constrained covariance estimation problem. The general
template of the CoVALSA algorithm and the instances related
to the different types of covariance structure mentioned above
are discussed in Section 3. Section 4 presents experimental
results illustrating the effectiveness of the proposed algorithm
and comparing it to the traditional vector approach.

2. COMPRESSIVE COVARIANCE ESTIMATION

2.1. Problem Formulation

Let x ∈ R
n denote a zero-mean random vector with covari-

ance matrix X ≡ E[xxT ], where (·)T denotes the transpose
operator. Our goal is to recover X from compressive mea-
surements

Y = AXAT , (1)

where A ∈ R
m×n is a sampling matrix with m < n.

One way in which the model (1) may arise is when we are
given a sequence of compressed measurements yt = Axt,
where xt, for t = 1, . . . , L, are sampled from independent
random vectors distributed as x. In general, we cannot re-
cover xt from yt since there are fewer measurements than
unknowns. However, if the covariance matrix X has struc-
ture, then we can attempt to recover it from the empirical co-
variance of the vectors yt.

Specifically, define Y as the sample covariance matrix of
yt, for t = 1, . . . , L. We then have that

Y ≡
1

L

L∑

i=1

yty
T
t = A

(

1

L

L∑

i=1

xtx
T
t

)

AT

= AXAT +A

(

1

L

L∑

i=1

xtx
T
t

)

AT −AXAT

︸ ︷︷ ︸

N

. (2)

In this work, we only assume that x is zero-mean, and has
finite covariance X. Under these conditions, the perturbation
N defined in (2) satisfies E[N] = 0 and E‖N‖2F ∝ (1/L),

where ‖N‖2F ≡ tr(NNT ) is the Frobenious norm of N. Mo-
tivated by these properties of N, we may formulate the co-
variance matrix estimation as the optimization problem

min
X

(1/2)‖Y −AXAT ‖2F + λφ(X) (3)

s.t. X ∈ S+.

Here φ : Rn×n 7→] −∞,∞] is a closed, proper, and convex
function, termed the regularizer, promoting solutions with a

priori known characteristics, λ > 0 is a regularization param-
eter setting the relative weight between the data term and the
regularizer, and S+ denotes the convex set of symmetric and
positive semi-definite matrices of a given fixed dimension.

In the formulation (3) we implicitly assume that the co-
variance matrix X has structure which can be incorporated in
order to promote stable recovery. In describing the structure it
will be useful to define the indicator function ιC : Rn×n 7→ R̄

of the set C, by

ιC(X) =

{
0, X ∈ C
∞, X /∈ C.

(4)

Herein, we consider the following instances of φ, which cor-
respond to different types of structure:

R1) Toeplitz: φ(X) = ιTk
(X), where Tk is the set of k

banded Toeplitz matrices (i.e, X ∈ Tk iff Xij = Xj−i

andXi,j = 0 for |j− i| > k). The Toeplitz structure arises
when the random vector is sampled from a second-order
stationary process with finite-length correlation.

R2) sparseness: φ(X) = ‖X‖1 ≡
∑

i,j |Xij |.

R3) zero-pattern: φ(X) = ιM (X), where M is a mask
(i.e., Mij ∈ {0, 1}) such that M ≡ {X ∈ R

n×n :
X = M ◦X}, and ◦ denotes the Hadamard product.

R4) low rank: φ(X) = ‖X‖∗ is the nuclear norm of X given
by ‖X‖∗ ≡

∑n
i=1

σi, where σ1 ≥ σ2,≥ . . . ,≥ σn ≥ 0
are the singular values of X.

R5) low permutated rank: φ(X) = ‖Rq(X)‖∗, where

Rq : R
n×n 7→ R

p2×q2 is a permutation rearrangement
operator such that given A ∈ R

p×p and B ∈ R
q×q with

n = pq, Rq(A ⊗ B) = vec(A)vec(B)T . Here vec(A)
denotes the column vector formed by staking the columns
of A. The regularizer ‖Rq(X)‖∗ promotes covariance
matrices given by low rank Kronecker product expan-
sions [18].

2.2. Vector Formulation

A popular approach to solve (3) is to turn the problem into
vector form. Specifically, by using properties of the Kro-
necker operation, we can rewrite (1) as

vec(Y) = (A⊗A) vec(X), (5)

where vec(Y) stacks the columns of Y into a column vector.
Denoting y = vec(Y), x = vec(X), and C = A ⊗ A, we
have that

‖Y −AXAT ‖2F = ‖y −Cx‖22. (6)

The regularizers φ(X) can also be described directly in terms
of x. This often necessitates changing slightly the regularizer



function to ψ(x) such that ψ(x) = φ(X). Problem (3) can
then be written as

min
x

(1/2)‖y −Cx‖22 + λψ(x). (7)

However, in this approach, the positive semi-definite con-
straint on X is not enforced. Furthermore, the length of y

is equal to m2 and the length of x is n2 so that the problem
dimensions have increased considerably. More specifically,
the overall dimensions of the data to be reconstructed do
not change. However the Kronecker product increases the
measurement matrix dimensions since C is am2×n2 matrix.

Several examples of this approach have been previously
considered in the literature for some of the regularizers men-
tioned above. In [3], the authors treat the case in which x is
stationary and therefore its covariance matrix X is Toeplitz.
Diagonal covariances matrices are considered in [4, 5]. A
sparsity constraint can be further added to the above struc-
tures [3–5]. Before discussing our matrix approach to covari-
ance estimation, we note that in [19], the authors solve the
optimization problem (3) directly in matrix form. In [20] the
authors consider an extension of OMP and FISTA to treat the
matrix formulation of (3) for arbitrary matrices X subject to
a sparsity prior. However, both works do not include the pos-
itive semidefinite constraint.

3. COVALSA ALGORITHM

In this section, we develop the CoVALSA algorithm which is
an instance of the SALSA methodology introduced in [17].
We start by converting the constrained optimization problem
(3) into the equivalent version

min
X

f1(X) + f2(V) (8)

subject to V = G(X).

Here

f1(X) ≡ 0 (9)

f2(V) ≡ g1(V1) + g2(V2) + g3(V3) (10)

with

g1(V1) ≡ (1/2)‖Y −AV1A
T ‖2F (11)

g2(V2) ≡ ιS+
(V2) (12)

g3(V3) ≡ λφ(H(V3)) (13)

and 



V1

V2

V3





︸ ︷︷ ︸

V∈Rn1×n2

=





I
I
H





︸ ︷︷ ︸

G

(X)

where I denotes the identity operator. It holds that H ≡ I
for the regularizers R1), R2), R3), and R4), and H ≡ Rq for
the regularizer R5) (i.e., the permutation rearrangement op-
erator). Finally, n1, n2 are, respectively, the number of rows
and of columns of V.

Algorithm CoVALSA

1. Set k = 0, choose µ > 0, V0 = (V1,0,V2,0,V3,0), and
2. D0 = (D1,0,D2,0,D3,0)
3. repeat

4. Xk+1 := argmin
X

‖G(X)−Vk −Dk‖
2
F

5. ν1 := Xk+1 −D1,k

6. V1,k+1 := argmin
V1

g1(V1) +
µ

2
‖V1 − ν1‖

2
F

7. ν2 := Xk+1 −D2,k

8. V2,k+1 := argmin
V2

g2(V2) +
µ

2
‖V2 − ν2‖

2
F

9. ν3 := G(Xk+1)−D3,k

10. V3,k+1 := argmin
V3

g3(V3) +
µ

2
‖V3 − ν3‖

2
F

11. D1,k+1 := −ν1 +V1,k+1

12. D2,k+1 := −ν2 +V2,k+1

13. D3,k+1 := −ν3 +V3,k+1

14. k ← k + 1
15. until stopping criterion is satisfied.

Fig. 1. CoVariance by Augmented Lagrangian Shrinkage Al-
gorithm (CoVALSA).

The next step consists in applying ADMM [21,22] to (8).
The following is a simplified version of a theorem of Eck-
stein and Bertsekas, adapted to our setting, stating conver-
gence conditions of ADMM.

Theorem 1 ( [21]) Let kernel(G) = {0} and f2 be closed,

proper, and convex. Consider arbitrary µ > 0 and V0,D0 ∈
R

n1×n2 . Consider three sequences {Xk ∈ R
n×n, k =

0, 1, ...}, {Vk ∈ R
n1×n2 , k = 0, 1, ...}, and {Dk ∈

R
n1×n2 , k = 0, 1, ...} that satisfy

Xk+1 = argmin
X
‖G(X)−Vk−Dk‖

2
F (14)

Vk+1 = argmin
V

f2(V) +
µ

2
‖G(Xk+1)−V−Dk‖

2
F (15)

Dk+1 = Dk − [G(Xk+1)−Vk+1]. (16)

Then, if (8) has a solution, the sequence {Xk} converges to

it; otherwise, at least one of the sequences {Vk} or {Dk}
diverges.

The proof of Theorem 1 uses the equivalence between
ADMM and the Douglas-Rachford splitting (DRS) method
applied to the dual of (8).

Fig. 1 shows the pseudocode of the derived algorithm,
which we name CoVariance by Augmented Lagrangian
Shrinkage Algorithm (CoVALSA). In order to implement
it, we need to solve the optimizations shown in lines 4, 6, 8,
and 10. We note that the operatorRq is a permutation so that
R∗qRq = I [(·)∗ denotes adjoint operator]. It follows then
H∗H = I for all five regularizers and then G∗G = 3I. The
solution of quadratic minimization stated in line 4 is then

Xk+1 := (1/3)G∗ (Vk +Dk) (17)

:= (1/3)
(

(V1,k +D1,k) + (V2,k +D2,k)

+H∗(V3,k +D3,k)
)

.

The remaining optimizations are addressed in the next
section.



3.1. Moreau proximity operators

The optimizations shown in lines 6, 8, and 10 are the Moreau
proximity operators [23] for the convex functions g1, g2, and
g3, respectively, which are interpretable as generalizations of
projections onto convex sets.

3.1.1. Moreau proximity operator for g1

From line 6 of CoVALSA, we have

ψg1/µ(ν) = argmin
V1

1

2
‖Y −AV1A

T ‖2F +
µ

2
‖V1 − ν‖2F ,

which can be computed by solving the linear system of equa-
tions

ATAV1A
TA+ µX = ATYA+ µν.

We then use the vec properties and the eigendecomposition
ATA = EΛET where E ∈ R

n×m holds the m eigenvectors
corresponding to them largest eigenvalues (the remaining n−
m are zero). After some manipulation, we have

ψg1/µ(ν) =
1

µ
Z−E[(ETZE) ◦D]ET , (18)

where Z ≡ ATYA + µν and D ≡ (aaT ) ⊘ [(aaT + µ)µ],
with a ≡ diag(Λ) and ⊘ standing for Hadamard division.

3.1.2. Moreau proximity operator for g2

From line 8 of CoVALSA, we have

ψg2/µ(ν) = argmin
V2

ιS+
(V2) +

µ

2
‖V2 − ν‖2F (19)

= E(Λ)+E
T , (20)

where (E,Λ) are the eigenvalues and eigenvectors of the (ν+
ν
T )/2 (the symmetric part of ν) and (Λ)+ is the non-negative

part of Λ [24].

3.1.3. Moreau proximity operator for g3

From line 10 of CoVALSA, we have

ψg3/µ(ν) = argmin
V3

λφ(V3) +
µ

2
‖V3 − ν‖2F . (21)

The solution of (21), for the different regularizers, is the fol-
lowing:

R1) ψg3/µ(ν) = Tk(ν)
R2) ψg3/µ(ν) = max{0,ν − λ/µ}sign(ν)
R3) ψg3/µ(ν) = M ◦ ν
R4) ψg3/µ(ν) = E(Λ)+F

T

R5) ψg3/µ(ν) = E(Λ)+F
T ,

(22)

where Tk(ν) replaces the diagonals −k, . . . , k of ν with its
mean value and with zero elsewhere, ψg3/µ for R2) is the

componentwise soft threshold and (EΛFT ) is the singular
value decomposition of ν [24].

The computational complexity of CoVALSA per iteration
is O(n3) and is dominated by the eigendecomposition and
the singular value decomposition necessary to compute ψg2/µ

and ψg3/µ, respectively.

4. EXPERIMENTAL RESULTS

To illustrate the effectiveness of CoVALSA, we show results
of experiments only for the Toeplitz constraint, due to lack
of space. The measurement matrices are sampled from a δ–
random bipartite ensemble: A ∈ {0, 1}m×n are drawn inde-
pendently (without replacement) and uniformly from the δ–
random bipartite ensemble (see Definition 4 [25] for details).

In this section, we consider two sources of noise. The first
one is the perturbation due to the finite number of samples, as
described in Section 2.1. The equivalent SNR corresponding
to L measurement vectors is given by

SNRL = 10 log10

(

L
||Y||2F

||Y||2F + (
∑m

i=1
Yii)2

)

. (23)

We then consider additive noise in the form of an indepen-
dent identically distributed (iid) Gaussian matrix Ng. In that
context, the SNR is defined as

SNR = 10 log10
||AXAT||2F
||Ng||2F

. (24)

Figures 2 and 3 shows the Toeplitz covariance matrix X =
[Xij ], with Xi,j = 0.7|i−j| and its estimation, with n = 100
and m = 50, without and with noise N due to the finite num-
ber of samples, respectively.

original covariance estimated image

Fig. 2. Toeplitz covariance matrix. Left: original. Right: esti-
mated with N = 0.

original covariance estimated image

Fig. 3. Toeplitz covariance matrix. Left: original. Right: esti-
mated with L = 200.

We then compare CoVALSA to the traditional vector-
ization approach mentioned in Section 2.2 for the Toeplitz
regularizer. This last approach does not enforce the semi-
positive definite constraint. We consider both measurement
matrices drawn from a δ–random bipartite ensemble, as de-
scribed above, and normalized iid Gaussian matrices. Figures
4 shows both the performances of CoVALSA and of the
standard vectorization approach described in Section 2.2, for
different values of the SNR and L, respectively. Each ex-
periment is repeated over 20 realizations. We observe that



our approach outperforms the traditional vector approach,
especially in low SNR regimes.
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Fig. 4. Relative RMSE of the matrix and vector approaches as
a function of the SNR with L = 200 (left) and as a function
of L with SNR= 0dB (right).

5. CONCLUDING REMARKS

The paper presented a class of convex formulations and re-
spective solutions to the high-dimensional covariance matrix
estimation problem under compressive measurements impos-
ing either Toeplitz, sparseness, null-pattern, low rank, or low
permuted rank structure on the solution, in addition to pos-
itive semi-definiteness. To solve the optimization problems,
we introduced the CoVariance by Augmented Lagrangian
Shrinkage Algorithm (CoVALSA), which is an instance
of the Split Augmented Lagrangian Shrinkage Algorithm
(SALSA). Compared with the popular formulations based
on Kronecker products and vec operators, and by enforcing
positive semi-definiteness on the estimated covariance ma-
trices, the proposed formulation yields improved recovery,
even from a small number of compressive measurements.
We observe that our approach outperforms the traditional
vector approach, especially in low SNR regimes, where the
prior information enforced by the symmetric and positive
semi-definite constraint has the highest impact.
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