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ABSTRACT

One of the challenges of feature extraction in image process-
ing is caused by the fact that objects originating from a fea-
ture class don’t always appear in a unique size, and the fea-
ture sizes are diverse. Hence, a multiresolution analysis using
wavelets should be suitable. Because of their integer scaling
factors classical dyadic or M-channel wavelet filter banks of-
ten don’t match very well the corresponding feature sizes oc-
curring within the image. This paper presents a new method
to optimally extract features in different sizes by designing a
rational biorthogonal wavelet filter bank, which matches both
the features’ characteristics and the significant sizes of the
most dominant features’ sizes. This is achieved by matching
the rational downsampling factor to the different feature sizes
and matching the filter coefficients to the feature characteris-
tics. The presented method is evaluated with the detection of
defects on specular surfaces and of contaminations on manu-
factured metal surfaces.

Index Terms— Wavelet transform, Feature matched fil-
ters, Classification, Machine Vision

1. INTRODUCTION

In recent years feature extraction based on wavelet methods
has been increasingly used in different research and appli-
cation fields. Jahankhani et al. [1] used a discrete wavelet
transform with Daubechies-wavelets to extract features from
electroencephalogram (EEG) signals and classified them by
means of neural networks. Based on the Morlet-wavelet a
denoising method was applied to feature extraction for me-
chanical vibration signals in [2]. For feature extraction from
near-infrared data Mallet et al. [3] optimized the wavelet fil-
ter coefficients by maximizing a chosen discriminant criterion
between classes with respect to conditions for orthogonality
and regularity of filters. Besides optimizing the wavelet as a
specific wavelet filter bank, another improvement to enhance
the performance of feature extraction is to design the wavelet
filter bank so that it can match features in not just only coef-
ficients but also various sizes. However, the application of
standard dyadic or M -channel wavelet filter banks has the

drawback, that the dilation factors are always integer values,
which leads to inflexibility when scaling is applied. In this
paper a new approach for feature extraction based on match-
ing wavelet filters to feature characteristics is proposed. The
wavelet filter banks are constructed to be biorthogonal to have
more degrees of freedom during filter design. To demonstrate
how the presented method works, the designed wavelet filter
banks are evaluated using detection tasks for defects on spec-
ular surfaces as well as for contaminations on manufactured
metal surfaces.

The optimization algorithm takes place in two steps: i) de-
termining the dominant feature’s sizes and selecting the most
suitable rational scaling factors with respect to these sizes and
ii) matching the filter coefficients of the wavelet filter bank to
selected image features.

The paper is organized as follows: the two steps of the
optimization method are presented in Section 2 and 3 respec-
tively. In Section 4 applications of the new method for clas-
sifying data from deflectometric measurements as well as for
detecting contaminations on metal surfaces are described. Fi-
nally a conclusion is made in Section 5.

2. MATCHING TO DOMINANT FEATURE SIZES

2.1. Determining dominant feature sizes

In the preparation step the image to be classified was first
segmented by different conventional image processing algo-
rithms, for example Laplacian of Gaussian or Prewitt opera-
tor, and then the feature sizes (also called as feature stretch-
ing) were measured. Based on the measured feature sizes by
each segmentation algorithm a joint result was built. For each
feature set consisting of features of the same class but dif-
ferent stretching, the most dominant feature sizes are chosen.
The idea for size-adaptive feature extraction optimization is
to design a wavelet filter bank with rational sampling factors,
which matches the filter lengths to dominant feature sizes.



2.2. Rational wavelet filter bank

One of the first approaches for designing wavelet filter banks
with rational sampling factors was introduced by Kovacevic
and Vetterli [4]. After that, some new ideas were presented
by other authors, for example in [5] or [6]. Among the meth-
ods for designing rational wavelet filter banks existing in the
literature, the approach of Nguyen et al. [7] was chosen for
this paper, because it can not only construct a biorthogonal
wavelet filter bank but also allows a large choice of rational
sampling factors. By this method a filter bank consisting of
two filters hLP and hHP with respective subsampling factors
(p0/M) and (p1/M) is created (Figure 1), with the restriction
that p0 + p1

!
= M .

Fig. 1. Wavelet filter bank with rational sampling factor (p0/M) and
(p1/M).

As long as the z-TransformHLP (z) andHHP (z) of hLP

and hHP can be decomposed into:

HLP (z) =

p0−1∑
n=0

zMnHn(zp0) and (1)

HHP (z) =

p1−1∑
n=0

zMnHn+p0(zp1), (2)

the given rational filter bank is equivalent to a filter bank with
M channels: H0, H1, ...,Hp0+p1−1. This means, that in this
case the non-uniform filter bank with rational sub sampling
factors (p0/M) and (p1/M) is equivalent to a uniform M -
channel filter bank [7].

2.3. Matching scaling factors to feature sizes

First of all a set F consisting of features of the same class
but different sizes is created. As described above the goal of
this feature extraction optimization is to design a biorthog-
onal wavelet filter bank as shown in Figure 1 with rational
sampling factor (p1/M) by filter hHP , which has a length of
λ and a curve shape similar to the feature in F . Based on the
number nlj of defects with the feature size lj , the t highest
numbers, which means the t most dominant feature sizes in
F are chosen: T = {lj , j = 0, ..., t − 1, lj < lj+1}. On the
basis of T , p1, M and λ should be defined so that:

p1
M
λ ≈ lt−1, ..., (

p1
M

)u1λ ≈ l1, (
p1
M

)u0λ ≈ l0. (3)

It means, with the help of sampling factor (p1/M), the length
λ of filter hHP is scaled to the size lt−1 by the first trans-
formation and to other sizes after some transformations. For
example sizes l1, l0 are obtained by the u1-th and the u0-th

transformation (ui ∈ N, 1 < ui < ui−1). Hence, the filter
matches most of the dominant feature sizes after some trans-
formations. One of the possible ways to find the most domi-
nant sizes in F is, for example, by means of a size histogram.
After this step the sampling factors p1, M and consequently
p0 (p0 = M − p1) for the desired filter bank are found.

3. MATCHING TO FEATURE CHARACTERISTICS

3.1. Conditions for biorthogonality

As described in Section 2.2, as long as the conditions in (1)
and (2) are fulfilled, a non-uniform filter bank with rational
sub sampling factors (p0/M) and (p1/M) is equivalent to
a uniform M -channel filter bank. An M -channel uniform
filter bank consists of M analysis filters Ht as well as M
synthesis filters Gt (t = 0, ..,M − 1). A signal s(n) can
be analyzed by the filters Ht to create decomposition coef-
ficients. With the filters Gt these coefficients can be used to
construct a signal ŝ(n). In case of s(n) = z−n0 ∗ ŝ(n) the
filter bank is called a filter bank allowing perfect reconstruc-
tion [8]. Mathematically, the perfect reconstruction condition
guarantees the biorthogonality of the filter bank. This condi-
tion is fulfilled, if the determinant ∆Q(z) of the polyphase-
matrix Q(z) of the filters ht consists of only a single term
z−n0 [9]. Q(z) has the form:

Qij(z) = z−jHij(z
M ). (4)

Here Hij(z
M ) is the jth polyphase component of the ith fil-

ter [8]. Its determinant ∆Q(z) can be calculated as:

∆Q(z) = c0z
−M M−1

2 + . . .+ cN−Mz
−[MN−M M+1

2
], (5)

with the constants cm, m = 0, . . . , N −M .

3.2. Matching filter coefficients to feature characteristics

For each class Ci on a given image I a one-dimensional curve
to describe a characteristic feature is estimated. This curve is
defined as the mean profile of the defect. After normalization,
the N sampling points of the curve define a feature filter hF

with length N . The typical feature curve hF is used for con-
structing a 2-channel biorthogonal wavelet filter bank. In the
first step the filter hLP is optimized as a low pass with the
least square objective function:

f0(hLP ) = hT
LP (P P0 + P S0)hLP , (6)

whereP P0
andP S0

are real symmetric positive semi-definite
matrices described in [10] to optimize the pass-band and stop-
band of filter hLP . The objective function f0(hLP ) is to be
minimized with the restriction:

g0 : ‖hLP − hF ‖2 > ε0. (7)

This approach effects that the first filter hLP is constructed to
be a low-pass filter and different from the given feature filter
hF .



After the first step the filter coefficients of hLP are avail-
able for designing an appropriate biorthogonal wavelet filter
hHP . Filters hLP and hHP build together vectors hi(i =
0, ...,M−1) as polyphase components for given rational sam-
pling factors (p0/M) and (p1/M) as in Figure 1:

hi[n] =

{
hLP [i+ np0] for i = 0, ..., p0 − 1,

hHP [i− np0 + np1] for i = p0, ...,M − 1.
(8)

As described in Section 2.2 the non-uniform filter bank (FB)
of hLP , hHP with rational sampling factor (p0/M) and
(p1/M) is now equivalent to a uniform M -channel FB of
hi. The non-uniform FB is therefore biorthogonal and allows
perfect reconstruction if the equivalent uniform FB has this
property. Due to the condition for perfect reconstruction in-
troduced in Section 3.1, all constants cm in (5) except one
need to be set to 0. cm consist of coefficients of hi, which are
also coefficients of hLP and hHP as in (8), and hence can be
used as constraints for designing filter hHP .

Filter hHP is optimized by the least square objective
function:

f1(hHP ) = hT
HP (P P1 + P S1)hHP . (9)

As in (6) P P1
and P S1

optimize here the pass-band and stop-
band for hHP . Furthermore the distance between filter hHP

and the given feature filter hF should be smaller than a given
constant ε1, which also means hHP should be similar to hF :

g1 : ‖hHP − hF ‖2 < ε1. (10)

The filter hHP can therefore be optimized by minimizing the
function f1(hHP ) with the constraints cm

!
= 0 (for all cm

except one) and g1.
Applying the sampling factors p0, p1 and M found in

Section 2.3 the desired biorthogonal wavelet filter bank with
rational sampling factors can be constructed and then used
for analyzing data. All analysis results at k-th iteration with
(p1/M)kλ = lj ∈ T are considered as features dk for clas-
sification in the next step (T is the set of dominant sizes as
defined before in Section 2.1).

4. APPLICATIONS

The introduced size-adaptive feature extraction was applied
on different image processing tasks. In the first application
the method was used for defect classification on specular sur-
faces obtained by deflectometry. In the second one it was used
for detecting contaminations on manufactured metal surfaces.

4.1. Defect classification on specular surfaces

For examining highly reflective surfaces, deflectometric
methods are most suitable because they exploit the specular-
ity of the surface and feature a high sensitivity to geometric
deviations from the ideal surface shape.

4.1.1. Fundamentals of deflectometry

A deflectometric measurement system consists of a camera
with image plane I , a specular surface S and a screen L ar-
ranged in a triangular setup. On the screen sinus patterns in
horizontal and vertical direction for phase shifting methods
are displayed. The camera observes a distorted pattern of the
screen over the specular surface. By observing a sequence
of patterns, viewing rays from the camera plane PI can be
uniquely assigned to points on the screen PL:

l : PI 7→ PL, l[u, v] = (xL, yL). (11)

This mapping l is called deflectometric registration. Without
knowing the distance between the camera and the surface it
is impossible to unambiguously reconstruct the surface from
the deflectometric registration. An overview of several reg-
ularizing methods for deflectometry is given by Werling et
al. [11]. In the following, we assume that a surface S(m,n)
is obtained as result of the deflectometric reconstruction in a
2

1

2
D representation1:

S(m,n) = z, with (m,n) ∈ N2, z ∈ R. (12)

In this case z is the estimated height of each pixel. While
many different defects can appear on the surface, most of
them have characteristic shapes. The size of the defects
ranges from very small to large, but their shape remains the
same for each class. For this reason wavelets can be con-
sidered as an appropriate method to detect and classify these
defects.

4.1.2. Defect classification

In this paper a supervised segmentation is applied. For the
classification a maximum a posteriori decision is made for
each point on the surface separately. By defining the parame-
ter vectors µi and σi as mean and standard deviation of each
coefficient in class Ci for all features dk in vector d, the prob-
ability for d belonging to class Ci is determined by Bayes’
rule:

p(µi,σi|d) =
p(d|µi,σi) p(µi,σi)

p(d)
. (13)

Like described in [12] coefficients can often be assumed as
Laplace distributed. In consequence the likelihood for class
Ci is modelled as product of univariate Laplace distributions:

p(d|µi,σi) =
∏
k

1

σi,k

√
2

exp

(
−
√

2
|dk − µi,k|

σi,k

)
. (14)

The parameters µi and σi for each class Ci are learned with
a training set for each class. The prior is chosen as being
uniformly distributed, but this could be changed in practice in
case that appropriate knowledge is available.

1The notation 2
1

2
D denotes that for each point in a 2D domain, exactly

one height value is available.



4.1.3. Results

Deflectometry data from different curved lacquered surfaces
with several large dents and many small pimples were ana-
lyzed. Since dents and pimples are the most common defects
on our lacquered surfaces, the experiment was performed us-
ing these two classes. There are totally 3 large dents and 33
pimples on the first surface, 3 large dents and 14 pimples on
the second surface, and 123 pimples on the third surface to be
detected. Additionally the surfaces have uneven formations,
called orange peel, which results in a high measurement noise
and complicates the detection of defects.

Fig. 2. Process for determining sampling factors

The process for determining scaling factors p0, p1 andM
describe in Section 2.3 is summarized in Figure 2. After seg-
mentation and measurement with different conventional seg-
mentation algorithms a joint result of the feature sizes (or so
called feature stretching) for each class on the surface is built.
Figure 3 shows the size histogram of the feature pimple on
a surface. Based on this histogram the most dominant sizes
of the features can be derived. In this example the 3 most
common lengths: 6, 7 and 11 (defined as l0, l1 and l2 respec-
tively) are chosen. By applying the calculation as described
in 2.3, it can be found that λ = 14, p1 = 4 and M = 5 satisfy
p1
M
λ ≈ l2, (

p1
M

)3λ ≈ l1, (
p1
M

)4λ ≈ l0. Now, by means of the
algorithm presented in 3.2 a filter bank with the rational sam-

pling factor (
4

5
) consisting of a filter optimized for the defect

pimple with length 14 together with its biorthogonal wavelet
filter can be constructed. The impulse response of the original
pimple filter and the filter obtained at the first transformation
are shown in Figure 4. Obviously, the general shape of the
pimple filter does not change after the transformation. The
same results were also achieved for l1 and l2.

By means of these filter banks, classifications for the two
defect classes pimple (Cp) and dent (Cd) were made. The

Fig. 3. Size histogram of the feature pimple.

Fig. 4. Impulse response of pimple matched filter.

accuracy value was chosen as metric for classification:

Accuracy =
#TP + #TN

#TP + #FP + #FN + #TN
, (15)

where #TP , #TN , #FP and #FN are the respective num-
bers of true positives, true negatives, false positives and false
negatives. The obtained accuracy by applying the rational
biorthogonal wavelet filter bank (RWFB) is presented in Ta-
ble 1 with different numbers t of chosen dominant sizes. As
reference correlation filters, standard wavelets filter bank as
well as M -channel optimized wavelet filter banks (MCFB)
introduced in [12] were also employed. The filter banks for
MCFB were optimized to given defect classes, but in contrast
to RWFB the scaling factors for MCFB were all integers.

It can be seen that with a larger number t of chosen
dominant feature sizes, the classification with RWFB got bet-
ter. With three considered sizes the RWFB provides better
results than MCFB as well as the standard wavelet. Up to
89% of pimple as well as 95% of dent are classified correctly
by RWFB. Due to the specific optimization to given defect
classes the filter banks with MCFB and RWFB classify the
surfaces better than the one with the standard wavelet. And
by means of matching the filter lengths to dominant feature
sizes in the image, the filter banks with RWFB deliver better
results than the one with MCFB.

Accuracy
Standard methods Cd Cp

Correlation filters 60% 66%
Biorthogonal spline wavelet 3.5 88% 35%

Method Matched Cd Cp

MCFB Cd 90% 73%
MCFB Cp 67% 78%
RWFB Cp, t = 1 75% 70%
RWFB Cp, t = 2 84% 84%
RWFB Cp, t = 3 95% 89%

Table 1. Comparison of the classification accuracy using different
wavelet filter banks for our classification method with the classes
dent Cd and pimple Cp.



Accuracy
Thresholding 70%
Biorthogonal spline wavelet 3.5 68%

RWFB Cs, t = 1 94%
RWFB Cs, t = 2 95%
RWFB Cs, t = 3 96%

Table 2. Accuracy using different wavelet filter banks for classifica-
tion of the class stain Cs.

Fig. 5. Textured metal surface with contaminations (left) and de-
tected contaminations (right).

4.2. Detection of contaminations on a metal surface

The feature extraction method was also used for a second ap-
plication, where totally 78 contaminations in form of black
stains on a metal surface should be detected. On the surface
visible textures which are caused by manufacturing and which
complicate the detection are present. In this case the bright-
ness curve of a stain on the surface was considered as the fea-
ture characteristic. In Table 2 the accuracy by using RWFB,
Thresholding and a filter bank with standard wavelet used for
detection is shown. The detection rate of the class stain Cs

is 94%, 95% and 96% by choosing 1, 2 and 3 dominant fea-
ture sizes, respectively, compared to 68% with the standard
biorthogonal wavelet and 70% with Thresholding. Figure 5
shows the textured metal surface with black stains to be de-
tected (left) and the result of stain detection on the surface
(right).

5. CONCLUSION

In this paper a novel method for optimizing feature extrac-
tion based on content-matched rational biorthogonal wavelet
filter banks was introduced. Based on i) matching the filter
coefficients to feature characteristics and ii) matching the ra-
tional subsampling factors to dominant feature sizes the pro-
posed method achieves better feature extraction and therefore
better classification results than other approaches. The pre-
sented approach was evaluated by different image processing
tasks: defect classification on specular surfaces examined by
deflectometry and detection of contaminations on manufac-
tured metal surfaces.
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