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ABSTRACT
Automatic classification of a speaker’s affective state is one of
the major challenges in signal processing community, since it
can improve Human-Computer interaction and give insights
into the nature of emotions from psychology perspective. The
amplitude and frequency control of sound production influ-
ences strongly the affective voice content. In this paper, we
take advantage of the inherent speech modulations and pro-
pose the use of instant amplitude- and frequency-derived fea-
tures for efficient emotion recognition. Our results indicate
that these features can further increase the performance of
the widely-used spectral-prosodic information, achieving im-
provements on two emotional databases, the Berlin Database
of Emotional Speech and the recently collected Athens Emo-
tional States Inventory.

Index Terms— Emotion classification, AM-FM features,
speech analysis, human-computer interaction

1. INTRODUCTION
Automatic emotion recognition has recently gained a lot of
interest in the signal processing field. It focuses on the de-
velopment of techniques to automatically recognize human
emotional states aiming at making the human-computer inter-
action more natural and giving further insights into emotional
expression [1].

Research efforts in this field have focused on both feature
extraction and classification. Low-level contours of prosody,
voice quality and articulatory information have been used to
extract high-level functionals that describe the emotional con-
tent of a sentence [2]. Diverse time scales of frame- and turn-
level have been also combined to recognize emotions from
speech [3]. Subsequent layers of binary classifiers were fur-
ther fused in a hierarchical framework for emotion classifi-
cation [4] and emotion profiles were introduced in order to
identify emotional properties of ambiguous utterances [5]. In
the context of continuous tracking of affective states, a Gaus-
sian Mixture Model-based approach [6] and a long short-term
memory neural network [7, 8] have also been proposed.

Although speech emotion recognition has mainly focused
on the extraction of prosodic and spectral features [3,9], other
studies have attempted to use the modulation properties of
speech signals [10, 11] to recognize human affective states.

Our approach differs from [11], in that we use multiple fre-
quency bands to compute amplitude and frequency modula-
tions based on the Energy Separation Algorithm (ESA) [12].
We also extend the ideas proposed in [10] for stress recogni-
tion including multiple AM-FM metrics, such as the instanta-
neous amplitude and frequency mean and standard deviation.

In this paper we introduce the use of short term speech
modulations [12], referred here as “Micro-Modulations”. A
speech signal can be modeled as a sum of AM-FM resonances
of the type:

ri(t) = αi(t) cos

(
2π

∫ t

0

fi(τ)dτ

)
each with instantaneous amplitude α(t) and instantaneous
frequency f(t) [12]. To compute these AM-FM signals the
Gabor ESA [13] is used. Similar modulation-inspired fea-
tures were shown to benefit speech recognition as well [14].

Our proposed modulation features are compared with
prosodic-spectral descriptors commonly used in these tasks
within different classification frameworks. We validate
our approach with two acted emotional databases: Berlin
Database of Emotional Speech (EmoDB) [15] and Athens
Emotional States Inventory (AESI). The later is a new
database created under the collaboration of National Tech-
nical University and Mental Health Care Unit of Athens for
the purposes of this paper. Our experiments show that the
combination of AM-FM and spectral features can provide
accuracies up to 79.8% and 67.4% for the two considered
databases respectively giving relative improvement of 10.7%
and 12% upon the baseline. Although better results have been
reported in EmoDB [3, 9, 16], the much lower dimensionality
of AM-FM features compared to the ones described in liter-
ature [3, 16] and the fact that their evaluation was performed
with a more strict experimental setup [9, 16] suggest that the
proposed features consist a viable front-end framework for
emotion recognition.

2. MODULATION FEATURES FOR EMOTION
In this section the proposed feature extraction scheme is de-
tailed (Fig. 1). Let x[k] be the original speech signal and
xi[k] be the signal corresponding to the ith frequency band
(k = 1, . . . ,K), where K is the frame length in samples.
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Fig. 1. Feature extraction overview.

We use ESA to compute its instantaneous amplitude and fre-
quency signals as follows: |αi[k]| ≈ Ψ(xi[k])√

Ψ(ẋi[k])
and fi[k] ≈

1
2π

√
Ψ(ẋi[k])
Ψ(xi[k]) , where Ψ(x) = ẋ2 − xẍ is the Teager-Energy

operator. Ψ is modeled continuously but implemented via
discrete convolutions with derivatives of the ith Gabor band-
pass filter’s impulse response gi; this increases robustness of
the ESA [13]. Alternatively, a Gammatone filterbank can be
used [17]. Thus,

Ψ(xi[k]) = (x[k] ∗ ġi[k])
2 − (x[k] ∗ gi[k]) (x[k] ∗ g̈i[k])

Ψ(ẋi[k]) = (x[k] ∗ g̈i[k])
2 − (x[k] ∗ ġi[k]) (x[k] ∗

...
g i[k])

Due to space limitation, in the above equations we use the
compact notation x[k] ∗ ġ[k] = x[k] ∗ dg(t)dt |t=kT , where T is
the sampling period, applying also to higher order derivatives.

To suppress the possible fluctuations, we performed 7-
sample median filtering and derived short-term features over
a frame of 25ms length (corresponding toK samples, as men-
tioned previously) with 10ms overlap. All features were com-
puted over 4-24 (with step 4) Mel-scale distributed bands.

“Micro-Amplitude” and “Micro-Frequency” features [14]
were derived from instant amplitude and frequency signals
computed with ESA over each frame m = 0, . . . ,M − 1,
where M is the number of speech frames. The term “micro”
refers to their inherent short-term information. They include
instant amplitude mean and standard deviation defined as:

IAMi[m] = 1
K

∑(m+1)K
k=mK+1 |αi[k]|

IASi[m] =
√

1
K−1

∑(m+1)K
k=mK+1 (|αi[k]| − IAMi[m])

2

Inspired by the features introduced in [10], we computed
the area under the instant envelope ei(t), which is a median
smoothed version of αi(t), and its autocorrelation area:

IAAi[m] =
∑(m+1)K
k=mK+1 ei[k]

AEi[m] =
∑(m+1)K
k=mK+1 ei[k] ∗ ei[−k]

We also computed the weighted mean F and square band-
width B2 of instant frequency defined as:

Fi[m] =
∑(m+1)K

k=mK+1 fi[k]·(αi[k])2∑(m+1)K
`=mK+1 (αi[`])

2

B2
i [m] =

∑(m+1)K
k=mK+1 [(α̇i[k])2+(fi[k]−Fi[m])2(αi[k])2]∑(m+1)K

`=mK+1 (αi[`])
2

To represent the time evolution of AM-FM signals, we
used the first derivative of IAM, IAA, AE and F, which will
be referred as IAM-Der, IAA-Der, AE-Der and F-Der respec-
tively. Second-order time derivatives were proven to be too
noisy and were not included.

Although there are many possible AM-FM feature com-
binations, we indicatively used the following:
• Mod1: IAM + IAM-Der + IAS + F + F-Der + B2

• Mod2: IAA + IAA-Der + IAS + F + F-Der + B2

• Mod3: AE + AE-Der + IAS + F + F-Der + B2

In an attempt to capture global trends, we computed the
mean and standard deviation of the above features over each
emotional sentence. This results in 12 features per band for
each of the 4-24 frequency bands.

The described features contain non-linear acoustic infor-
mation due to the modulations. We combine these with the
mean and standard deviation, computed over each sentence,
of the first 13 MFCCs and their first-order derivatives (noted
as Mod1+MFCC, Mod2+MFCC, Mod3+MFCC), in order to
capture the linear source-filter acoustic information. This re-
sults in a feature array of 100-340 dimensions depending on
the number of frequency bands.

There is evidence from auditory physiology, psychoa-
coustics and speech perception, that signal modulations are
related to sound perception [18]. Concerning the analysis of
speech emotional content, it was found that amplitude mod-
ulation substantially enhances the information transmitted in
human speech [19]. We indicatively examined the influence
of emotion to instant amplitude and for the sake of simplicity
we selected four emotions that are referred as bipolar pairs
according to Plutchik’s wheel representation [20]: anger and
fear, joy and sadness. Low activated emotions, such as fear
and sadness, tend to have stronger amplitude modulations in
low frequencies, whereas anger and joy depict strong am-
plitude content through the whole frequency spectrum, as
demonstrated in our data. The instant amplitude mean over
time and modulation frequencies for an given sentence in
EmoDB uttered from the same speaker is shown in Fig. 2.

3. FEATURE SELECTION AND CLASSIFICATION
Since some of the modulation features might have correlated
information, we transformed the original proposed and base-
line feature sets to improve classification accuracy.

Speaker normalization was used to compensate for speaker
variability by normalizing the features from same-speaker
sentences to have zero mean and unity standard deviation.

To increase feature discriminability, we performed feature
selection according to the Fisher Discriminant Ratio criterion
[21], defined as:

FDR = 1
N(N−1)

∑N
n=1

∑N
`=n+1

(µn−µ`)2

σ2
n−σ2

`

where N is the number of emotional classes and µn, σ2
n are

class n mean and variance. If a feature’s FDR value was less
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Fig. 2. Visualization of instant amplitude mean (as computed
for 20 frequency bands) over time and frequency for sentence
a02 of EmoDB (“Das will sie am Mittwoch abgeben”, i.e.
“She will hand it in on Wednesday”) uttered by speaker 13.

than a percentile threshold fprc of the maximum FDR of the
original feature set, the corresponding feature was omitted.

A decorrelation scheme was used to avoid redundant in-
formation, mainly because of the overlap in the successive
frequency bands. If the Pearson’s correlation coefficient for
a given pair of features is higher than a threshold value rthr,
we included only the feature with higher FDR.

Finally, we performed LDA over the feature set from
decorrelation to further increase class separation. Since we
have 7 and 5 classes in EmoDB and AESI respectively
and LDA results in one fewer dimension than the total
classes [21], we get a final 6- and 4-dimensional feature
vector per dataset.

The same selected features were fed to two classifiers, i.e.
Gaussian Mixture Models (GMMs) and Support Vector Ma-
chines (SVMs). GMMs had a full covariance matrix and were
implemented with HTK [22]. We used binary SVMs with lin-
ear kernel trained with SVM-light [23] for each pair of classes
and took the final decision based on majority voting for the
class chosen by the maximal number of SVMs.

4. EXPERIMENTS
4.1. Data Description
Since the effect of emotion on the AM-FM features has not
been extensively studied, we used two databases with emo-
tional sentences of acted speech in order to keep our experi-
ments as controlled as possible.

EmoDB [15] includes 535 utterances from seven basic
emotions (anger, boredom, disgust, fear, happiness, sadness,
neutral). Ten native German professional actors expressed ten
different sentences each with all emotions. 65 sentences were
omitted due to annotator disagreement.

AESI contains 696 utterances of five basic emotions
(anger, joy, sadness, fear, neutral) from 20 native Greek
students. The content of each sentence reflects the corre-
sponding emotion and was validated based on a systematic
survey with 40 people (separate from the ones participating in

the recording) who were asked to rate each sentence based on
the 5 predetermined emotional states. The recordings were
performed in a sound-proof room using the same setup and
audiovisual equipment with 44.1kHz sampling rate. Each stu-
dent expressed 7 sentences per emotion, resulting in balanced
number of samples across classes (∼ 140 sentences/emotion).
In total, 4 utterances were omitted by the speakers by acci-
dent. The originality of the database occurs in the fact that it
is of the few systematic efforts to record emotional sentences
in greek with high quality audiovisual equipment. Previ-
ous studies focused on recording isolated greek emotional
words [24] or more unstructured data [25].

4.2. Experimental details
Our classification scheme included a leave-one-speaker-out
cross-validation. In each fold one speaker was used for
test, one for development (dev) and the rest for train set.
Dev-set was used for tuning feature selection and clas-
sifier parameters to avoid overfitting. The values tested
were fprc = 0.05, . . . , 0.5 (with step 0.05) for the FDR
percentile and rthr = 0.1, . . . , 0.9 (with step 0.1) for the
Pearson correlation threshold. The system had to choose
between 1 or 2 Gaussian mixtures for GMM and among
C ∈ {0.01, 0.1, 1, 5, 10} trade-off parameter values for SVM.
All feature transformations were derived based on the train
data and then applied on the dev and test set for each fold.

The baseline against which we compared our proposed
modulation features consists of the first 13 Mel-Frequency
Cepstral Coefficients (MFCCs), their first-order derivatives
and the fundamental frequency of speech, resulting in 27 fea-
tures. We computed their mean and standard deviation over
the whole sentence, consisting an array of 54 parameters. We
will refer to this as “MFCC+Prosody”. Despite its simplic-
ity, this baseline is able to capture part of the spectral and
prosodic information relevant for our task. Since it is much
lower in dimensionality than other commonly used frame-
works, such as descriptors extracted with the openSMILE
toolkit [26], it is more comparable to our AM-FM approach.
In future work we plan to assess the performance of AM-FM
features with other more complicated front-end systems.

The proposed modulation feature sets (Mod1, Mod2,
Mod3), their combination with MFCCs (Mod1+MFCC,
Mod2+MFCC, Mod3+MFCC) and the baseline (MFCC+
Prosody) were evaluated with the two classifiers.
4.3. Results
Our system performance is measured with the unweighted
classification accuracy (UA), a less sensitive measure to un-
balanced distribution of instances among classes defined as:

UA =
1

N

N∑
n=1

cn
νn

where N is the number of emotional classes, νn is the num-
ber of samples in class n and cn is the number of correctly
classified samples from class n.



Table 1. Unweighted classification accuracy (UA, %) in EmoDB and AESI using two classifiers (GMM, SVM) based on the three
groups of modulation features (Mod1, Mod2, Mod3) computed over 4-24 (with step 4) frequency bands, their combinations with
MFCCs (Mod1+MFCC, Mod2+MFCC, Mod3+MFCC) and the baseline (MFCC+Prosody). Significant difference between the
median UA over all folds of the proposed against the baseline system was evaluated with a one-sided Wilcoxon Rank-Sum test
(*,†: statistical significance p < 0.05, 0.1, respectively). Bold font indicates the best result for each feature group and classifier.

Database Feature
GMM SVM

Number of Freq. Bands Number of Freq. Bands
4 8 12 16 20 24 4 8 12 16 20 24

EmoDB

MFCC+Prosody 71.3 72.9
Mod1 51.6 55.8 64.4 58.3 66.4 63.1 48.1 56.1 62.9 60.6 59.7 58.5
Mod2 51.8 55.8 64.4 58.2 62.1 63.4 46.6 54.0 60.9 57.5 63.0 57.8
Mod3 54.8 53.9 62.1 61.9 61.6 64.8 50.7 54.1 59.7 59.3 66.3 60.4

Mod1+MFCC 77.7 74.9 76.2 79.4† 79.2* 77.6† 72.0 73.7 74.8 74.6 77.0 74.7
Mod2+MFCC 77.7 74.9 76.3 79.4† 79.2* 77.3† 71.2 74.3 73.7 74.0 76.4 74.6
Mod3+MFCC 74.6 75.7 78.0† 77.8† 79.8* 77.8† 73.7 69.4 73.6 73.6 76.2 74.3

AESI

MFCC+Prosody 60.2 49.2
Mod1 53.2 50.8 59.9 57.1 52.4 54.7 42.0 39.2 43.0 44.8 44.3 44.7
Mod2 52.4 50.7 59.8 56.9 52.4 55.4 37.5 43.4 38.1 45.7 43.8 45.9
Mod3 53.4 52.4 54.3 56.3 50.3 54.7 40.6 40.7 42.0 40.1 43.8 44.3

Mod1+MFCC 63.7 65.0† 65.7* 67.0* 64.8† 64.6 55.4* 57.3* 58.8* 59.3* 58.9* 57.2*
Mod2+MFCC 63.7 65.1† 65.7* 67.4* 65.0† 64.6 57.7* 58.1* 53.9† 57.8* 53.8† 57.0*
Mod3+MFCC 64.9* 65.3† 66.1* 67.2* 65.3† 63.4 58.5* 56.6* 57.3* 55.1* 56.6* 53.2

UAs of modulation features across all frequency bands,
their combination with MFCCs and the MFCC+Prosody
baseline are reported in Table 1. Significance of improvement
is evaluated with a one-sided Wilcoxon Rank-Sum test [27]
comparing the medians of classification accuracies over all
cross-validation folds between proposed and baseline system.

Increasing the number of frequency bands yields in better
accuracies, since we incorporate more detailed information of
speech modulations. AM-FM features computed over many
frequency bands provide lower results but comparable to the
spectral-prosodic ones and improve performance upon base-
line when combined with MFCCs. UAs reach up to 79.8%
(Mod3+MFCC, 20 freq. bands, 292 features before selection)
and 67.4% (Mod2+MFCC, 16 freq. bands, 244 features) in
EmoDB and AESI respectively. Performance on EmoDB is
higher, which could stem from AESI’s variable lexical con-
tent. AESI utterances were different for each emotion, which
was not the case for EmoDB. Mod2 and Mod3 containing in-
stant amplitude area and Autocorrelation Envelope (both de-
rived after instant amplitude smoothing), tend to yield better
results. Finally, GMMs give higher UAs than SVMs, which
could be due to GMMs’ ability to better model the low di-
mensional feature space resulting from LDA.

Although better performance has been reported in EmoDB,
the corresponding studies use more complex front-end frame-
works or employ less strict experimental setup. Schuller
et al. [28] achieve UAs up to 85.6% with 6552 features of
prosodic and spectral supra-segmental information. Using
a similar scheme (5967 features) and splitting two groups
of speakers for the train and test set, unweighted precision
and recall reach 76.1% and 83.6% in a 6-class classification
task (omitting disgust) [29]. Cepstral low-level attributes
integrated into sentence descriptors give weighted accuracies
(biased on the number of class samples) up to 85% with fea-
ture dimensionality of 3809 [30] and 1054 [16]. The latter
are reported with a stratified cross-validation, i.e. each fold

contains the same proportion of class samples introducing
speaker dependencies. Also, no dev-set was used and system
parameters were optimized on the test set. It is worth men-
tioning that in [16], UA dropped from 83.1% to 72.6% with
leave-one-speaker-out instead of stratified cross-validation.
Finally, a different approach combining a Universal Back-
ground Model (UBM) with Maximum a Posteriori (MAP)
adaptation resulted in 81.35% accuracy [31]. Despite the bet-
ter reported results, these indicate that our proposed features,
much lower in original dimensionality (at most 340), evalu-
ated with no speaker dependencies and using a held-out set,
are promising especially when combined with complemen-
tary front-end descriptors and/or more powerful classifiers.

5. CONCLUSIONS AND FUTURE WORK
We proposed a new feature extraction framework for emotion
classification based on modulation features computed with
ESA. The inherent existence of amplitude and frequency
modulation in speech is informative for our task, since the
combination of modulation-spectral features almost always
achieves improvement in EmoDB and AESI over the spectral-
prosodic baseline. Results suggest that multi-band filtering
can capture emotional information and denser sampling of
frequency bands increases classification accuracy.

Future work will investigate the performance of modula-
tion features in other emotional databases with spontaneous
conversational speech. We will also combine the modulation
features with established frameworks in emotion recognition,
such as descriptors derived with OpenSmile [26]. AESI con-
tains also video recordings enabling audiovisual fusion.
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