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ABSTRACT
Spectral activity detection of wideband radio-frequency

(RF) signals for cognitive radios typically requires ex-
pensive and energy-inefficient analog-to-digital converters
(ADCs). Fortunately, the RF spectrum is—in many practical
situations—sparsely populated, which enables the design of
so called analog-to-information (A2I) converters. A2I con-
verters are capable of acquiring and extracting the spectral
activity information at low cost and low power by means of
compressive sensing (CS). In this paper, we present a high-
throughput spectrum recovery stage for CS-based wideband
A2I converters. The recovery stage is designed for a CS-based
signal acquisition front-end that performs pseudo-random
subsampling in combination with coarse quantization. High-
throughput spectrum activity detection from such coarsely
quantized and compressive measurements is achieved by
means of a massively-parallel VLSI design of a novel acceler-
ated sparse signal dequantization (ASSD) algorithm. The re-
sulting design is implemented in 28 nm SOI CMOS and able
to reconstruct 215-point frequency-sparse RF spectra at a rate
of more than 7.6 k reconstructions/second.

1. INTRODUCTION

1.1. Wideband Spectrum Sensing

Spectrum sensing aims at identifying unused frequency bands
with the goal of reusing them to improve the spectral uti-
lization [2]. Since bandwidth is a scarce and, hence, ex-
pensive resource, spectrum sensing is believed to play a ma-
jor role in meeting the ever-growing demand for higher data
rates in next-generation wireless systems. Conventional high-
precision, high-rate analog-to-digital converters (ADCs) offer
a straightforward solution for acquiring wideband signals in
the GS/s regime, but they are typically energy-inefficient and
expensive [3], and can result in excessive data rates (on the
order of tens of Gb/s). These drawbacks prohibit their deploy-
ment in low-cost, battery-powered devices. Hence, to enable

Parts of this paper have been published in IEEE JETCAS [1]. The
present paper describes a substantially improved version of the recovery stage
and a corresponding reference VLSI design in 28 nm SOI CMOS.

spectrum sensing at low power and low cost, novel wideband
sensing techniques and corresponding VLSI circuits that are
able to efficiently extract information about the spectral occu-
pancy are necessary.

1.2. Analog-to-Information Conversion

In recent years, a number of spectrum occupancy surveys
observed that the radio-frequency (RF) spectrum is sparsely
populated in many practical situations [4]. Compressive
sensing (CS) is a popular sampling paradigm that enables
one to acquire such frequency-sparse signals at sub-Nyquist
rates, while enabling their reconstruction using sophisticated
sparse signal recovery algorithms [5]. Hence, CS allows the
design of so-called analog-to-information (A2I) converters,
which compressively sample sparse signals using inexpen-
sive, energy-efficient analog circuits, while sophisticated
sparse signal recovery algorithms extract the information
contained in the acquired signals, such as the spectral occu-
pancy [1, 6, 7].

Due to the high computational complexity associated with
sparse signal recovery, virtually all existing CS-based A2I de-
signs perform signal recovery off-line [6,7]. Off-line process-
ing, however, results in excessive I/O data-rates and prohibits
the use of adaptive sensing strategies. In contrast, on-chip
sparse signal recovery has the potential to avoid these draw-
backs at the cost of requiring complex VLSI circuits [8].

1.3. Contributions

This paper describes a high-throughput, sparse signal re-
covery stage for wideband spectrum sensing in 28 nm SOI
CMOS. The proposed recovery stage is part of the CS-based
wideband A2I converter reported in [1], which leverages CS
via randomized sub-Nyquist sampling and coarsely quantized
measurements, inspired by recent results in 1-bit CS [9, 10].
For this A2I converter, we develop an efficient algorithm
that is able to recover the sparse spectral information from
coarsely quantized and compressive measurements. We then
propose approximations on the algorithm level to enable its
efficient implementation in VLSI. To achieve high recovery



throughput, we deploy a massively-parallel 215-point radix-
32 fast Fourier transform (FFT) unit. We finally provide
post-synthesis results in 28 nm SOI CMOS that demonstrate
the efficacy of the proposed spectrum recovery unit.

2. QUANTIZED COMPRESSIVE SENSING

2.1. Compressive Sensing in a Nutshell

CS enables sub-Nyquist sampling and reconstruction of sig-
nal vectors y ∈ RN having a sparse representation x with
only K � N non-zero entries in an orthonormal basis Ψ,
i.e., y = Ψx. In particular, CS acquires M non-adaptive, lin-
ear measurements of the signal vector y as follows [5]:

z = Φy + n, (1)

where Φ ∈ RM×N is a sensing matrix with fewer rows
than columns (M < N ) and n ∈ RM models noise. Given
that the effective matrix D = ΦΨ satisfies certain condi-
tions [5], CS enables one to accurately recover y from the
compressive measurements in z. For spectrum sensing, the
sensing matrix Φ and the sparsifying basis Ψ correspond to
a pseudo-random subsampling operator and to the discrete
Fourier transform (DFT) matrix, respectively [1]. This com-
bination enables the acquisition of sparse RF signals at rates
well-below Nyquist.

2.2. Quantized Compressive Sensing

In practical systems, the compressive measurements are ac-
quired by ADCs and, hence, instead of real-valued measure-
ments as in (1), quantized measurements are acquired [9–11]

q = Q(z) = Q(Dx + n). (2)

Here, Q(·) : R → O is a scalar quantizer (applied element-
wise), which maps a real number x into Q = |O| ordered
labels according to Q(x) = q if bq−1 < x ≤ bq , q ∈ O, with
the bin boundaries −∞ = b0 < · · · < bQ = +∞. In short,
quantized CS recovers the sparse vector x from the quantized
measurements in q. The advantage of quantized CS is that it
allows a further reduction of the measurement dimensionality,
which enables the use of low-precision ADCs with low area
and power requirements. As an example, the A2I converter
in [1] takes particular advantage of quantized CS and deploys
a low-cost and low-complexity, wideband 4-bit flash ADC.

2.3. Basis Pursuit De-Quantization

To recover the sparse vector x from the measurements q, the
method in [11] assumes that the noise vector n in (2) is i.i.d.
zero-mean Gaussian with variance σ2, which enables one to
compute the likelihood of each measurement qi as

p(qi |dHi x) =

∫ ui

`i

1√
2πσ2

exp

(
−|ν − dHi x|2

2σ2

)
dν, (3)

1: x1 = y0 = 0N×1 and t1 = 1
2: while k = 1, . . . ,Kmax do
3: yk ← shrink

(
xk + 1

LDH∇f(Dxk)
)

4: tk+1 ← 1
2

(
1 +

√
1 + 4t2k

)
5: xk+1 ← yk +

(
tk−1
tk+1

)
(yk − yk−1)

6: end while

Algorithm 1. Accelerated sparse signal dequantization.

where ui = bqi and `i = bqi−1 are, respectively, the upper
and lower bin boundary positions associated with qi, and dHi
corresponds to the ith row of D = ΦΨ. The idea behind
the method in [11] is to find the most likely sparse vector x
that is consistent with the quantized measurements q, consid-
ering the system model (2). Thus, instead of using the stan-
dard, least-squares objective function that would result from
the unquantized system (1), we minimize the negative log-
likelihood of (3) together with an `1-norm penalty to promote
sparse solutions. The resulting convex optimization problem,
referred to as basis pursuit de-quantization, corresponds to

(BPDQ) minimize
x̃

λ‖x̃‖1 −
∑M
i=1 log p(qi |dHi x̃),

where the parameter λ > 0 trades sparsity of the solution x̂
for consistency to the quantized measurements in q.

2.4. Accelerated Sparse Signal Dequantization

To arrive at a recovery method that enables an efficient in-
tegration in VLSI, we propose an alternative to the method
in [11], referred to as accelerated sparse signal dequantiza-
tion (ASSD). The ASSD algorithm (summarized in Alg. 1)
builds on FISTA [12] and performs the following three steps
until a maximum number of iterationsKmax has been reached.

1) The gradient step enforces consistency to the quantized
measurements q. We set wi = dHi x and rewrite (3) as

p(qi |wi) = Φ
(
σ−1(ui − wi)

)
− Φ

(
σ−1(`i − wi)

)
with Φ(a) = 1√

2π

∫ a
−∞ exp

(
− 1

2ν
2
)
dν. With the definition

f(w) = −
∑M
i=1 log p(qi |wi), the ith entry of the gradient

∇f(w) is given by [11]

[∇f(w)]i =
exp
(
− |ui−wi|2

2σ2

)
− exp

(
− |`i−wi|2

2σ2

)
√

2πσ2
(
Φ
(
ui−wi

σ

)
− Φ

(
`i−wi

σ

)) . (4)

To ensure convergence, we use a constant step size deter-
mined by the Lipschitz constant L = λ2max(D)/σ2, where
λmax(D) is the largest singular value of D. For spectrum re-
covery, D is a randomly-subsampled DFT matrix. Hence, we
have L = 1/σ2, which can be precomputed and stored in a
configuration register.

2) The shrinkage step takes into account the `1-norm in
(BPDQ) and enforces sparsity on the vector x performing
element-wise complex-valued shrinkage as follows [12]:



shrink(x) =

{
x
|x| max

{
|x| − λ/L, 0

}
if x 6= 0

0 otherwise.
(5)

3) The prediction step computes a new estimate of the sparse
vector xk+1. The update on lines 4 and 5 of Alg. 1 yields
accelerated convergence rates [12], which is key for achieving
low computational complexity. To avoid costly square root
and division operations, we precompute τk = (tk − 1)/tk+1

and store them in a 128-entry look-up table (LUT).

2.5. Algorithm Approximations

To arrive at a high-throughput ASSD design, we deploy the
following algorithm-level approximations.

1) The gradient step (4) requires transcendental functions.
To avoid this, we use the following approximation:

[∇f(w)]i ≈

 σ−2(ui − wi) wi > ui
0 `i ≤ wi ≤ ui
σ−2(`i − wi) wi < `i.

(6)

We note that the accuracy of this approximation depends on σ
and improves for decreasing values of σ.

2) Complex-valued shrinkage (5) requires a division op-
eration, which may cause issues with finite-precision (e.g.,
fixed-point) arithmetics. We therefore perform approximate
shrinkage of x ∈ C using shrink(x) ≈ η(<{x})+ i η(={x}),
where η(v) = sign(v) max

{
|v| − λ/L, 0

}
. We note that the

accuracy of this approximation depends on the ratio between
|x| and the threshold λ/L.

3. HIGH-THROUGHPUT ASSD ARCHITECTURE

3.1. High-Level VLSI Architecture

The proposed VLSI architecture is shown in Fig. 1(a) and
comprises three main units: An approximate gradient unit, an
approximate shrinkage unit, and a 215-point radix-32 I/FFT
unit. The time-domain samples and the information about the
(non-uniform) sample instants are stored in on-chip SRAMs
ω and sq , respectively. The q LUT holds digital representa-
tions of the upper and lower quantization bin boundaries ui
and `i, respectively. The remaining memories store interme-
diate results of the ASSD algorithm in Alg. 1.

The proposed architecture alternately performs forward
and inverse FFTs. To ensure a low latency, the output of the
inverse FFT is directly fed through the approximate gradient
calculation and straight back to the FFT memory. Shrink-
age and prediction process the data from the forward FFT in
a similar way. In the final iteration of the ASSD algorithm,
the result of the shrinkage unit corresponds to the sparse RF
spectrum estimate.

3.2. High-Throughput Parallel Radix-32 I/FFT Unit

Since the number of clock cycles for one ASSD iteration is
determined by the number of clock cycles for one forward

and one inverse FFT, a high-throughput FFT unit is required.
While aiming at a recovery bandwidth of over 3 GHz, sens-
ing the spectral activity within the narrow bands of today’s
communication standards needs a resolution of at least 215

points. To maximize the throughput of the ASSD unit at
low silicon area, while providing a sufficient spectral reso-
lution, we decided to implement a 215-point inverse/forward
FFT unit (shown in Fig. 1(b)) containing a single radix-32
processing element (PE).

In each clock cycle, the radix-32 PE reads and writes 32
data items from the FFT’s main data memory. In order to
achieve such a massive parallelism without causing memory
access contentions, we partition this memory into 64 inde-
pendent banks (see Fig. 1(b)). To minimize silicon area, we
use single-port memories in combination with a sophisticated
contention-free read and write access scheme. In each clock
cycle, the input data for the radix-32 PE is read from a spe-
cific set of 32 memories, whereas its output is stored in the
remaining set of 32 memories.

The radix-32 PE (shown in Fig. 1(c)) is built from 31
complex-valued multipliers and a combination of a radix-16
stage and a radix-2 stage in a split-radix fashion. The radix-16
stage consists of two identical radix-16 PEs, each built from
8 multiplier-less radix-4 PEs. The inverse FFT is calculated
by reversing the data path of the forward FFT with the aid of
multiplexers. To maximize the throughput, the radix-32 PE
features 11 pipelining stages. Post-synthesis results in 28 nm
SOI CMOS show that the I/FFT unit can achieve a maxi-
mum clock frequency of more than 1 GHz, which leads to
a throughput of over 309 k 215-point FFTs per second. As a
comparison, the 215-point FFT in [13] uses 4 parallel radix-2
PEs and computes only 274 FFTs/second in 90 nm CMOS.

4. IMPLEMENTATION RESULTS

4.1. Sparse Spectrum Recovery Performance

To evaluate the spectral activity detection performance, we
use the following metrics: (i) True positive detection rate:
The number of correctly detected active frequency bins di-
vided by the total number of effectively active bins. (ii) False
positive detection rate: The number of frequency bins falsely
detected divided by the total number of inactive bins. We
set the spectral activity threshold to 20 dB above the quanti-
zation noise floor. The regularization parameter λ is chosen
such that an optimal detection rate is obtained. Assuming
a quantization-noise-limited receiver (such as the one in [1])
the noise variance σ2 can be set to V 2

LSB/12, where VLSB is the
voltage difference of the least-significant-bit of the ADC.

To characterize the impact of the signal sparsity on the
detection rate and the algorithm’s noise sensitivity, simula-
tions with synthetic test data were performed. The percent-
age of active frequency bins was set according to the desired
sparsity level, while the location and spectral magnitude were
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Fig. 1. Architecture of the ASSD recovery unit: (a) overview; (b) radix-32 I/FFT unit; (c) radix-32 processing element (PE).
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Fig. 2. Detection performance for synthetic test data: (a) varying signal sparsity levels; (b) varying input SNR; (c) comparison
of an ideal (floating-point) model, a model including the approximations detailed in Sec. 2.5, and the fixed-point golden model.

both chosen at random.1 To obtain the desired input SNR,
i.i.d. zero-mean Gaussian noise with appropriate variance was
added. All results were averaged over 10 Monte–Carlo trials,
each running for Kmax = 100 ASSD iterations.

Fig. 2(a) characterizes the impact of the signal sparsity
level on the detection rate for a different number of quantiza-
tion bits B. The SNR of the input signal was set to exceed
the corresponding signal-to-quantization-noise ratio by 3 dB.
Reducing the signal sparsity from 10 % to 0.1 % improves the
detection performance. The performance drop near 1 % ac-
tive bins is due to the choice of the undersampling factor and
the regularization parameter λ. Both parameters can be set
at run-time to adapt the ASSD algorithm to the current spar-
sity level of the input signal. For the presented results, the
undersampling factor was set to 11.5, while the appropriate
λ values were found to be 2.3 for 2 bit, 3.7 for 3 bit, 8.8 for
4 bit, 55 for 5 bit, and 165 for 6 bit resolution.

Figure 2(b) shows the effect of the noise level on the de-
tection rate for an input SNR from −10 dB to 60 dB; the sig-
nal sparsity level was set to 0.5 % for all trials. The true pos-

1The locations and non-zero entries were generated using an i.i.d. uniform
and i.i.d. zero-mean Gaussian distribution with unit variance, respectively.

Maximum clock frequency [MHz] 952
Maximum throughputa [MS/s] 252
Memory power consumptionb [W] 1.53
Logic power consumptionb [W] 1.56

aAt Kmax = 20 ASSD algorithm iterations.
bEstimated power consumption at 952MHz, Vdd = 0.92V, and 300K.

Table 1. Post-synthesis results in 28 nm SOI CMOS

itive detection rate quickly drops for input SNRs below 0 dB,
whereas larger SNRs result in good detection performance.
In summary, for sufficiently high input SNRs, the ASSD al-
gorithm achieves true and false positive detection rates close
to 100 % and 0 %, respectively.

4.2. Fixed-Point Parameters

To minimize area and power consumption, and to maximize
throughput, the proposed VLSI design uses fixed-point arith-
metic. In the final design, the acquired time-domain signal
is quantized to 4 bit. The real and imaginary part of the data
in the radix-32 PE are represented with 24 bit each, which



Fig. 3. ASSD chip layout.

mm2 % MGEc mm2 % kBit

Gradient unit (32x) 0.05 2 0.10 S memory 0.11 5 131
Shrinkage unit (32x) 0.02 1 0.04 Ω memory 0.05 2 33
I/FFT unit 0.60 29 1.23 Y memory 0.22 11 786
– Radix-32 PE 0.38 0.78 X memory 0.22 11 786
Prediction step unit 0.34 17 0.70 FFT memories 0.45 22 1574

Total logic cells 1.01 49 2.07 Total memories 1.05 51 3310
c1GE equals 0.4896µm2 in the used 28 nm SOI CMOS technology.

Table 2. Area Breakdown of the ASSD Unit

determines the word-width of the memories, as well as the
precision of the gradient and thresholding units. Thus, the
time- and frequency-domain signals are represented with
24 bit and 48 bit, respectively. The FFT twiddle-factors use
18 bit, while the τ LUT has 8 bit entries. Figure 2(c) com-
pares the detection rates using an ideal (i.e., floating-point)
model, a model including the approximations, and the fixed-
point golden model. The SNR is 3 dB below the quantization
noise level, λ = 2.0, and the undersampling factor is 7.5.
As shown in Fig. 2(c), the algorithm-level approximations, as
well as the use of fixed-point arithmetics only entails a small
loss in detection performance.

4.3. Implementation Results

The post-synthesis results for the proposed ASSD unit in
28 nm SOI CMOS are summarized in Tbl. 1. Our design
achieves a maximum frequency of 952 MHz. The area break-
down in Tbl. 2 and the silicon chip layout in Fig. 3 show that
the FFT unit consumes almost 30% of the total area, of which
2/3 are occupied by the radix-32 PE and 1/3 by the network
connecting the PE and the FFT memories. The SRAM con-
sumes half of the chip area, 43% of which is used for the
FFT. The achievable spectral bandwidth is only limited by
the employed signal acquisition front-end. Our spectrum re-
covery unit achieves over 7.6 k spectrum reconstructions per
second, which is—to the best of our knowledge—the highest
recovery throughput of a VLSI design for CS-based spectrum
sensing reported in the open literature.
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