
ADAPTIVE RE-WEIGHTING HOMOTOPY FOR SPARSE BEAMFORMING

Fernando G. A. Neto, Vı́tor H. Nascimento

Escola Politécnica, University of São Paulo
São Paulo, Brazil

fganeto@lps.usp.br, vitor@lps.usp.br

Yuriy V. Zakharov, Rodrigo C. de Lamare

University of York / CETUC/PUC-Rio
York, UK / Rio de Janeiro, Brazil

yury.zakharov@york.ac.uk, delamare@cetuc.puc-rio.br

ABSTRACT

In this paper, a complex adaptive re-weighting algorithm
based on the homotopy technique is developed and used for
beamforming. A multi-candidate scheme is also proposed
and incorporated into the adaptive re-weighting homotopy
algorithm to choose the regularization factor and improve
the signal-to-interference plus noise (SINR) performance.
The proposed algorithm is used to minimize the degradation
caused by sparsity in arrays with faulty sensors, or when
the required degrees of freedom to suppress interference is
significantly less than the number of sensors. Simulations
illustrate the algorithm’s performance.

Index Terms— Multi-candidate re-weighting homotopy,
beamforming, adaptive algorithms

1. INTRODUCTION

Adaptive beamformers are used in sensor arrays to enhance
the reception of a signal of interest and suppress interfer-
ence [1]. They implement techniques such as the minimum
variance distortionless response (MVDR) beamformer [1] us-
ing data collected from sensors, since the second-order statis-
tics required to compute the MVDR, in general, are not avail-
able and must be estimated.

Although many fields apply adaptive techniques to beam-
forming, such as radar, sonar and wireless communications
[1], large arrays are difficult to implement with traditional ap-
proaches. Techniques such as the least mean-square (LMS),
conjugate gradient (CG) and recursive least-squares (RLS) al-
gorithms [1, 2] have their convergence and tracking perfor-
mances affected either by the size or the eigenvalue spread
of the input correlation matrix [2]. Therefore, beamform-
ers with many parameters may require many snapshots to
converge, which are incompatible with the requirements of
some applications (for instance, space-time adaptive process-
ing for airborne radar [3, 4]). Previous works report tech-
niques that incorporate information about sparsity on the data,
or knowledge that only a reduced number of degrees of free-
dom is required to suppress interference in a sensor array, to
enhance their performance. Reduced-rank algorithms [5–7]
and sparsity-aware techniques [3, 4] play an important role

This work is funded by CNPq and York-FAPESP grants.

in this field. Reduced-rank methods are applied to problems
where a reduced number of effective features is required to
retain most of the intrinsic information content of the input
data. For beamforming, they benefit from the low-rank struc-
ture of the interference correlation matrix, reducing the num-
ber of parameters to compute. Sparsity-aware algorithms use
some form of regularization to include prior knowledge that
the signal of interest is sparse. The regularization allows the
computation of sparse solutions, providing a considerable re-
duction of the number of coefficients to adapt in sparse beam-
formers. As a result, many calculations are avoided and the
convergence is accelerated, as reported by [3, 4].

Many sparsity-aware algorithms have been proposed re-
cently (for instance, [8–11]). Among them, the homotopy
algorithm [9] is an ℓ1-norm regularized algorithm used for
many purposes, such as recovering of sparse signals from
noisy measurements [10] and channel estimation [11]. Moti-
vated by the results of the homotopy algorithms, in this paper
we use the complex homotopy (CH) [11] and the adaptive
re-weighting homotopy (ARH) [10] techniques to develop
two new algorithms for sparse beamforming. We develop
the complex ARH (C-ARH) and the multi-candidate C-ARH
(MC-C-ARH) algorithms, and show that they achieve better
SINR performance than existing adaptive beamformers. The
proposed algorithms are useful for interference suppression
when the required degrees of freedom is much less than the
number of sensors and in the presence of faulty sensors.

Notation: Lower case is used for scalar quantities (e.g.:
a) and bold lower case for column vectors (e.g.: b). Bold cap-
ital letters represent matrices (e.g.: A). bk stands for the k-th
element of b, while ak is the k-th column of A. (·)T stands
for transposition, while (·)H is the Hermitian of a matrix or
vector. The operations Im{·} and Re{·} take only the imag-
inary and real parts of a complex number, and diag(·) defines
a diagonal matrix. || · ||p is the ℓp-norm, and E{·} is the ex-
pectation operator. IK represents a K × K identity matrix,
and 0K×M represents a K ×M matrix of zeros.

2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a uniform linear array (ULA) with M sensors, and
assume K signals amongst which one has a known desired
direction of arrival θd and K − 1 interferences. Define the

M × K matrix B, where each column bk corresponds to a
steering vector [1] as given by

bk = [1 e−jπsin(θk) . . . e−jπ(M−1)sin(θk)]T , 1 ≤ k ≤ K.

At snapshot n, the sensor array data is modeled as

u(n) = Bs(n) + η(n), (1)

where s(n) contains signals produced by the sources, and
ηi(n) corresponds to zero-mean independent and identically
distributed (i.i.d.) Gaussian noise with variance σ2

η . Define
θd = θ1. The MVDR coefficients [1] are given by

hMVDR = xMVDR/b
H
d xMVDR, (2)

where xMVDR is the solution to RtxMVDR = bd. Rt is the
M ×M correlation matrix [1] and is given by

Rt = E{u(n)uH(n)} = Rd +RI +Rη, (3)

where we split the contribution of u(n) in (1) into the desired
direction (subscript d) and the interference (subscript I), i.e,

u(n) = bd sd(n) +BI sI(n) + η(n), (4)

to compute Rd = σ2
dbdb

H
d , RI = BIE{sI(n)sHI (n)}BH

I ,
and Rη = σ2

ηI. σ
2
d is the variance of the signal of interest.

Note that the computation of the beamformer requires the
solution of a linear system of equations. When the number
of sources is much less than the number of sensors, Rt can
become ill-conditioned, requiring some form of regulariza-
tion to compute xMVDR. In addition, when the measurements
of some sensors are not available, a sparsity-aware algorithm
can be applied to compute a low-cost solution.

2.1. Small number of interference sources

Consider that K << M , and define RdI = Rd + RI. As-
sume that the interference sources are uncorrelated among
each other, such that rank(E{s(n)sH(n)}) = K , and that
rank(B) = K . Using properties of the rank of matrices [12],
one can show that 1

rank(RdI) = rank(BE{ssH}BH) = K. (5)

Since rank(RdI) = K , the eigenvalue decomposition of RdI

is given by RdI = VDVH , where V is the eigenvector ma-
trix, and D is a diagonal matrix with K non-zero entries. Us-
ing the eigenvalue decomposition of RdI and (3), we obtain

Rt = V

[

D0 + σ2
ηIK 0K×M−K

0M−K×K σ2
ηIM−K

]

VH , (6)

where D0 contains the K non-zero eigenvalues of D.From
eq. (6), the condition number [12] of Rt is given by

κ(Rt) = (dMAX + σ2
η)/σ

2
η, (7)

where dMAX stands for the maximum eigenvalue ofD0. Equa-
tion (7) shows that Rt becomes ill-conditioned if the noise
power is much smaller than dMAX. In this case, a regulariza-
tion can be added to Rt to improve the computation of xMVDR.
We show that our sparsity-aware algorithms can regularizeRt

to improve the SINR performance.

1We drop here time coefficients to simplify notation.

2.2. Faulty sensors in the array

When a sensor j is not working properly, the measurements
captured by j must be discarded. This information is incor-
porated into the model with a modification of eq. (4), where
we introduce E, i.e.,

u(n) = (Ebd) sd(n) + (EBI) sI(n) + η(n) (8)

where E is an M × M diagonal matrix with entries equal
to 0 for sensors that do not contribute for beamforming, and
1 otherwise. When ejj = 0, we zero the j-th element of
all steering vectors, which eliminates the signal produced by
sensor j. With this approach, we assume that the removed
sensors do not receive a signal, but they still contribute with
noise, and the noise has the same power as before. Using (8)
to compute the correlation matrix, we obtain

Rt = ERdIE+Rη. (9)

Assuming that the array has L < M faulty sensors, and that
these sensors are grouped such that the last L diagonal ele-
ments of E are zero, Rt is given by

Rt =

[

(R̃dI + σ2
ηIM−L) 0(M−L)×L

0L×(M−L) σ2
ηIL

]

, (10)

where R̃dI is a square matrix obtained from the first M − L
columns and the first M −L rows of RdI. Ideally, if we know
matrix E, we solve the linear system of equations given by

RtxMVDR = Ebd, (11)

where only the first M−L entries of Ebd are non-zero. From
(10) and (11), we see that the solution is sparse, and only
M − L entries of xMVDR need to be computed. In general,
E is unknown and has to be estimated beforehand. In this
paper, we use the energy detection method [13] to estimate
the faulty sensors. Note that with E, one can directly apply
size-reduction of (11) to computexMVDR. However, in our ap-
proach we use E to explicitly exploit the sparsity in (11) with
ℓ1-norm regularized algorithms. We show that this approach
outperforms reduced-rank algorithms in sparse-beamforming
scenarios, improving the SINR performance.

3. COMPLEX HOMOTOPY ALGORITHMS

The CH algorithm was first proposed in [11], as an extension
of real-valued homotopy [9] to the complex field. In both
cases, the technique solves the optimization problem

minimizex||Ax− y||22/2 + w||x||1, (12)

where A is M × N , y is M × 1, x is an N × 1 vector that
minimizes (12), and w is a regularization parameter. The
technique iteratively solves (12) based on a support set that
is updated at every iteration. For each homotopy iteration, x
must satisfy the following optimality conditions [11]

aHi (Ax − y) = −wzi, for all i ∈ Γ
|aHi (Ax− y)| < w, for all i ∈ ΓC

, (13)

where Γ is the support set, ΓC is the complement of Γ, and
z denotes a vector obtained by applying the sign function el-
ementwise on x. The algorithm starts with x = 0 and com-
putes maxi(|aHi (y − Ax)|) – the maximum initial correla-
tion [11] – to initialize w and to define the first element of Γ.

At each iteration, one element is added or removed from Γ,
which moves w to w − ϵ. To maintain the conditions in (13),
x moves towards x+ ϵ∂x, i.e., 2

AH
Γ (Ax− y) + ϵAH

Γ A∂x = −wzΓ + ϵzΓ
|aHi (Ax− y) + ϵaHi A∂x| < w − ϵ, i ∈ ΓC

. (14)

From (14), we arrive at a set of linear equations used to com-
pute ∂x. Using ∂x, we find ϵ, and update w and Γ in the next
step. These steps are repeated until w = 0 or some stopping
criterion is met. References [9,11] present a detailed descrip-
tion of the algorithm.

3.1. Proposed C-ARH algorithm

Based on the CH algorithm, in [10] the ARH algorithm was
proposed to solve the ℓ1-weighted optimization problem

minimizex||Ax− y||22/2 +
M
∑

i=1

wi|xi|, (15)

where wi > 0 are the entries of the weight vector w. The mo-
tivation to solve (15) instead of (12) is the possibility to adjust
different weights to penalize the solution coefficients, which
can be used to enhance the level of sparsity of the solution
and improve the performance [10].

The ARH algorithm applies a re-weighting approach to
quickly compute x, when w is replaced by a re-weighting
vector w̃. The idea behind the algorithm is that the solution
moves to x+ δ∂x when w moves towards w̃ along a straight
line (1− δ)w+ δw̃, for δ ∈ [0, 1]. The technique was devel-
oped for real-valued signals. Simulation results have shown
that ARH yields better performance in terms of computational
cost and reconstruction accuracy than ℓ1-based solvers (see
[10]) used for recovering sparse signals from noisy measure-
ments. These results motivated us to develop the C-ARH and
the MC-C-ARH algorithms for sparse beamforming.

Note that in [10] the ARH algorithm is presented with
δ ∈ [0, 1]. For convenience, when we present the C-ARH,
we assume δ ∈ [0, δ̃]. In Section 3.2 we use different values
of δ̃ to construct a diverse set of possible solutions at each
homotopy step, thus achieving higher performance.

For eq. (15), the optimality conditions are defined as

AH
Γ (Ax − y) = −WzΓ

|aHi (Ax− y)| < wizi ∈ ΓC
, (16)

where W = diag(wΓ), and z contains the signs of the ele-
ments of x after the entries are applied to the sign function.
When w moves to (1− δ)w + δw̃, (16) changes to

AH
Γ (Ax− y) + δAH

Γ A∂x = −WzΓ + δ(W − W̃)zΓ
|aHi (Ax− y) + δaHi A∂x| < wi + δ(w̃i − wi), i ∈ ΓC

,

(17)
and W̃ = diag(w̃Γ). In order to obtain ∂x, compute

∂x =

{

(AH
Γ AΓ)−1(W − W̃)zΓ

0, in ΓC
, (18)

where zi = aHi (Ax− y)/wi, i ∈ Γ. To update Γ, we have
to check if a breakpoint occurred. A breakpoint occurs in
two situations: when one element of x ∈ Γ shrinks to zero,

2Subscript Γ is used to identify quantities related to the support set.

or when one inequality becomes an equality in (17). When
one element shrinks to zero, the direction has to be changed,
and this element must be removed from Γ. Recall that x is
updated as x = x+ δ∂x. An element of x crosses zero when

δ = −xi/∂xi, for some i ∈ Γ. (19)
Define xR = Re{x}, xI = Im{x}, dR = Re{∂x} and
dI = Im{∂x}, and recall that δ must be a real number in the
interval [0, δ̃]. The parameter δ is a real value in (19), only if

xRi
/dRi

= xIi/dIi , i ∈ Γ. (20)
We remove an element γ− from Γ if (20) holds for some i,
and if (19) is in [0, δ̃], for the same breakpoint. If two or more
breakpoints fulfil the restrictions, we choose the smallest one
to be removed. In Table 1, we compute

g = min+(−xRi
/dRi

), for all xRi
/dRi

= xIi/dIi , i ∈ Γ
to define the breakpoint that must be removed, where min+(·)
returns the smallest positive value in the argument. When g is
empty, no term is removed, and C-ARH chooses an element
γ+ that must be added to Γ. In this case, γ+ is chosen by

γ+ = arg maxi∈ΓC
|aHi (Ax − y)|, (21)

and δ ← δ̃. The last step is the update of wi ∈ ΓC , which
is given by wi ← maxj |aHj (Ax− y)|, for all i ∈ ΓC . The
algorithm stops when the maximum wi ∈ Γ is smaller than a
pre-defined parameter τ . Table 1 summarizes the algorithm.

Re-weighting selection: For this paper, w̃ is given by

w̃i = min (ζ, ζ/β|xi|) , for all i ∈ Γ, (22)

where ζ = 2σ2
η and β = N ||x||22/||x||

2
1. We emphasize that

(22) was used since it provides the best simulation results for
our scenario. Other re-weightings can also be applied.

Computational cost: Using pre-computation of AHy
and AHA, and defining |Γ| as the cardinality of Γ, the max-
imum computational cost of the algorithm corresponds to
4|Γ|N + 6|Γ| + N multiplications, 4|Γ|N + 4|Γ| additions
and 3|Γ| divisions, plus the cost to solve a |Γ| × |Γ| system
of equations. The re-weighting presented in (22) uses an
additional cost of 3|Γ|+2 multiplications, 3|Γ|− 2 additions,
2 divisions and |Γ| square roots per iteration.

Application for sparse beamforming: In this case, C-
ARH solves (15) using A=R (R is an estimate of Rt), y=bd

and δ̃=1. The beamformer is computed with h=x/bH
d x.

3.2. Proposed MC-C-ARH algorithm

In the C-ARH algorithm, when we choose δ̃ = 1, w moves
towards w̃. However, we can choose a different δ̃ and define
a re-weighting that is a linear combination of w and w̃. Since
in general there is no information about the weighting vector
that generates the most accurate x, the combination of the two
weighting vectors can be a better option than only w̃. In this
context, we propose MC-C-ARH to exploit multiple choices.

We start with the definition of a set Λ of NC candidates
for δ̃. For each δ̃ ∈ Λ, the algorithm computes the solution
xi. A comparison criterion (e.g., mean-square error (MSE) or
SINR) is used to define the best solution computed for each
candidate. The candidate with the best figure of merit is se-
lected and the algorithm returns the corresponding solution.

Table 1. C-ARH algorithm
Input: A, y, τ , δ̃ Output: x, w
Initialize: x = 0, wi ← maxi|aH

i y|, Γ← arg maxi|a
H
i y|

Repeat:
Select w̃
For all i ∈ Γ, compute zi = aH

i (y−Ax) /wi

Solve (AH
Γ
AΓ)∂x = (W − W̃)zΓ

Compute xR = Re{xΓ}, xI = Im{xΓ},
dR = Re{∂xΓ} and dI = Im{∂xΓ}

g = min+(−xRi
/dRi

), for all xRi
/dRi

= xIi/dIi
δ = min(g, δ̃)
x = x+ δ∂x
wΓ = wΓ + δ(w̃Γ −wΓ)
if δ < δ̃

Γ← Γ \ γ− ◃ Remove an element from Γ
else

γ+ = arg maxi∈ΓC
|aH

i (Ax − y)|
Γ← Γ ∪ γ+ ◃ Add a new element to Γ

end
wi ← maxj |aH

j (Ax− y)|, for all i ∈ ΓC

until maxi(wi) ≤ τ

In Table 2 we summarize the algorithm, which is proposed for
sparse beamforming. For the i-th candidate, C-ARH solves
eq. (15), where A = R (R is an estimate of Rt), y = bd and
δ̃ = λi ∈ Λ. The beamformer hi is given by hi = xi/bH

d xi.
In general, Rd, RI and Rη are not available, and an

indirect method is required to select the candidate which pro-
vides the highest SINR. Define RIη = RI + Rη and recall
that Rd = σ2

dbdb
H
d and bH

d hi = 1. The SINR is given by

SINRi = hH
i Rdhi/h

H
i RIηhi = σ2

d/h
H
i RIηhi, (23)

and it is maximized when hH
i RIηhi is minimum. Since RIη

is unknown, (23) cannot be directly minimized. As an alter-
native, we note that the minimization of

hH
i Rthi = σ2

d + hH
i RIηhi, (24)

also maximizes the SINR, and an estimate R of Rt can be
used to compute (24). However, the computation of (24) is
costly, proportional to O(N2). To reduce the number of com-
putations, we propose a simpler method, with cost O(N).

Defining RIη = DIη +∆, where DIη = σ2
IηI has the di-

agonal entries of RIη , and ∆ contains the other elements, we
can write SINRi = 1/[(σ2

Iη/σ
2
d)||hi||22 + (1/σ2

d)h
H
i ∆hi]. If

we consider only two candidates, and that SINR1 > SINR2,
then we obtain

||h1||
2
2 < ||h2||

2
2 + (hH

2 ∆h2 − hH
1 ∆h1)/σ

2
Iη. (25)

We omit some mathematical manipulation here, but one can
show that σ2

Iη =
∑K

i=2 σ
2
si + σ2

η , where σ2
si are the power

of the interferers. If we assume that ∆ is small compared to
σ2

IηI, then the second term in the right-hand side of (25) can
be neglected. Extending the idea to Nc candidates, we obtain
the proposed selection algorithm

hMAX = hk when k = arg mini(||hi||
2
2), i = 1, 2, . . . , Nc.

Our simulations show that the MC-C-ARH improves the con-
vergence and steady-state SINR, when compared to C-ARH.

Computational cost: The algorithm’s complexity is NC

times the complexity of C-ARH, plus the cost to obtain hi

and ||hi||22, which requires 10N + 2 multiplications, 8N − 2
additions and 2 divisions per candidate.

Table 2. MC-C-ARH algorithm
Input: R, bd, τ , Λ Output: hMAX

for all λi ∈ Λ :

Use δ̃ = λi in C-ARH to compute xi (see Table 1)
Compute hi = xi/bH

d xi

end for
Find k = arg mini{||hi||22} to obtain hMAX = hk

4. SIMULATIONS

In our simulations, we use a 64-sensor ULA and assume
one direction of interest with an angle of 20o, and 4 interfer-
ences with angles 30o, 45o, 53o and 60o. We perform two
simulations. In the first one, 48 sensors are randomly chosen
to have zero-input, creating a sparse scenario. In this case,
we assume that after 300 snapshots one additional sensor
is faulty, and that 400 snapshots later, the sensor starts to
work properly again. In the second simulation, we assume
that there are no faulty sensors, and we compare the algo-
rithms’ performance when C-ARH and MC-C-ARH are used
to regularize the correlation matrix. We compare the SINR
performance of RLS [1], ℓ1-constrained RLS (ℓ1-RLS, that
we have adapted from [8] for beamforming), CH [11], C-
ARH, MC-C-ARH, and the theoretical MVDR beamformer.
In the sparse scenario, we also present the reduced-rank RLS
(RR-RLS), which is computed with E, and oracle C-ARH
and oracle MVDR, which use the theoretical E.

The power of each interferer is 10 times the power of the
signal of interest, σ2

d = 1. The SNR is 8dB, and the noise is a
zero-mean Gaussian i.i.d. sequence. The signals produced by
the sources are zero-mean binary sequences of−1 and 1, and
we use an iterative estimate of the Rt, i.e.,

R(n+ 1) = νR(n) + u(n)uH(n), (26)

where ν = 0.98 and R(0) = 10−3I.
The estimation ofE is performed with the diagonal entries

of R(n). We assume that once the j-th sensor is faulty, rjj(n)
is proportional only to the noise power. Otherwise, when
the j-th sensor works properly, rjj(n) contains the power
contribution of the interferences and the noise. In this case,
one must expect the diagonal entries of R(n) related to faulty
sensors to have smaller values. To define the faulty sensors,
we compute the threshold Thr = 10−0.6maxj(rjj(n)), and
compare it to all rjj(n). If rjj(n) is smaller than Thr for some
j, then the j-th sensor is faulty, and ejj is set to 0. Otherwise,
we set ejj = 1. Note that using this threshold, we assume that
all the diagonal entries which are at least 6dB smaller than the
maximum rjj come from faulty sensors. In our simulations,
E is estimated only during the first 100 snapshots. Then, we
use the last estimated matrix for the remaining snapshots.

The algorithms are adjusted to achieve the maximum
SINR in the steady-state. In the sparse scenario, C-ARH and
MC-C-ARH use τ = 0.36, and we set δ̃ = 1 for C-ARH.
MC-C-ARH uses three candidates, Λ = [0.4 0.8 1]. The
CH algorithm is adjusted to stop when |β| < 1.8, where β
corresponds to the residue. The ℓ1-RLS regularization factor
is set to 0.1. For the second simulation, MC-C-ARH and
C-ARH use τ = 0.32, |β| < 2 in CH and the ℓ1-RLS regular-

0 200 400 600 800 1000
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

0 500 1000
0

5

10

15

20

25

30

35

40

45

50

CH

CH

C-ARH

MC-C-ARH

C-ARH

MC-C-ARH

MVDR=1.15dB MVDR=1.15dBMVDR=0.72dB

H
o
m

o
to

py
it

er
at

io
n
s

S
IN

R
(d

B
)

SnapshotsSnapshots

RR-RLS

Oracle C-ARH

Oracle C-ARH

Fig. 1. SINR (left) and number of homotopy iterations per snapshot (right)
when there are 48 faulty sensors. Mean of 500 realizations. RLS and ℓ1-RLS
had inferior performance (maximum performance of SINRRLS=−6.8dB and
SINRℓ1-RLS =−6.4dB, respectively), and are not shown. Oracle MVDR
is computed for the 3 intervals, assuming that the faulty sensors are known
(presented in the figure just as MVDR).

0 50 100 150 200 250 300 350 400
−3

−2

−1

0

1

2

3

0 200 400
0

20

40

60

80

100

120

140

160

RLS

ℓ1-RLS

CH

CH

C-ARH

C-ARH

MC-C-ARH

MC-C-ARH

MVDR=8dB

H
o
m

o
to

py
it

er
at

io
n
s

S
IN

R
(d

B
)

SnapshotsSnapshots
Fig. 2. SINR (left) and number of homotopy iterations per snapshot (right)
when all sensors are active. Mean of 500 realizations.

ization factor is 0.05. MC-C-ARH uses the same candidates
as before, and δ̃ = 1 in the C-ARH algorithm.

From Fig. 1 and 2, we see that the homotopy algorithms
outperform RLS, ℓ1-RLS and RR-RLS, but C-ARH and MC-
C-ARH have superior performance. For both scenarios, C-
ARH provides better SINR steady-state. MC-C-ARH outper-
forms C-ARH, improving both convergence and steady-state,
with the extra cost of additional iterations introduced by the
candidates. In the sparse scenario, we note that the estimated
E allows C-ARH to have almost the same performance as or-
acle C-ARH. Between snapshots 300 and 700, when there is
an additional faulty sensor, C-ARH is worse than oracle C-
ARH, since the algorithm is not aware of this failure. How-
ever, C-ARH is better than the other algorithms and is only
outperformed by MC-C-ARH. RR-RLS is worse than the ho-
motopy techniques presented in Fig. 1, for all snapshots. The
performance difference is even more noticeable between 300
and 700 snapshots (when the support is wrongly estimated),
and after 750 snapshots, when RR-RLS diverges. In this case,
we notice that C-ARH and MC-C-ARH using the estimated E
to explicitly exploit the sparsity in xMVDR perform better than
the RR-RLS algorithm used to solve a reduced-size system of
equations, which justifies our approach.

5. CONCLUSIONS

In this paper, we extend the real ARH algorithm to the com-
plex domain and apply it to sparse beamforming and to the
regularization of non-sparse arrays. For the proposed sce-
narios, we showed that C-ARH outperforms traditional algo-
rithms of the literature, both in convergence and in steady-
stead. The MC-C-ARH algorithm presents superior perfor-
mance, and outperforms C-ARH, with the cost of additional
iterations introduced by the candidates.

REFERENCES

[1] H.L. Van Trees, Optimum Array Processing: Part IV of

Detection, Estimation and Modulation Theory, Wiley,
2002.

[2] S.S. Haykin, Adaptive Filter Theory, 4ed., Prentice
Hall, 2002.

[3] Z. Yang, R.C. de Lamare, and X. Li, “L1-regularized
STAP algorithms with a generalized sidelobe canceler
architecture for airborne radar,” IEEE Trans. Signal
Processing, vol. 60, no. 2, pp. 674–686, 2012.

[4] Z. Yang, R.C. de Lamare, and X. Li, “Sparsity-aware
space-time adaptive processing algorithms with L1-
norm regularisation for airborne radar,” IET Signal Pro-
cessing, vol. 6, no. 5, pp. 413–423, 2012.

[5] M.L. Honig and J.S. Goldstein, “Adaptive reduced-
rank interference suppression based on the multistage
Wiener filter,” IEEE Trans. Commun., vol. 50, no. 6,
pp. 986–994, 2002.

[6] R.C. de Lamare, “Adaptive reduced-rank LCMV beam-
forming algorithms based on joint iterative optimisation
of filters,” Electronics Letters, vol. 44, no. 9, pp. 565–
566, 2008.

[7] R.C. de Lamare and R. Sampaio-Neto, “Adaptive
reduced-rank processing based on joint and iterative in-
terpolation, decimation, and filtering,” IEEE Trans. Sig-
nal Processing, vol. 57, no. 7, pp. 2503–2514, 2009.

[8] D. Angelosante and G.B. Giannakis, “RLS-weighted
lasso for adaptive estimation of sparse signals,” in
IEEE Int. Conf. on Acoust., Speech and Signal Process.
(ICASSP), 2009, pp. 3245–3248.

[9] D.L. Donoho and Y. Tsaig, “Fast solution of L1-
norm minimization problems when the solution may be
sparse,” IEEE Trans. Inform. Theory, vol. 54, no. 11,
pp. 4789–4812, 2008.

[10] M.S. Asif and J. Romberg, “Fast and accurate algo-
rithms for re-weighted L1-norm minimization,” IEEE
Trans. Signal Processing, vol. 61, no. 23, pp. 5905–
5916, Dec 2013.

[11] C. Qi, L. Wu, and X. Wang, “Underwater acoustic chan-
nel estimation via complex homotopy,” in IEEE Int.
Conf. on Commun. (ICC), 2012, pp. 3821–3825.

[12] C.D. Meyer, Matrix Analysis and Applied Linear Alge-
bra, SIAM, Philadelphia, USA, 2000.

[13] S.M. Kay, Fundamentals of Statistical Signal Process-
ing: Detection Theory, Prentice Hall, 1998.

