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ABSTRACT
Kernel techniques for classification is especially challenging
in terms of computation and memory requirement when data
fall into more than two categories. In this paper, we extend
a binary classification technique called Ridge-adjusted Slack
Variable Optimization (RiSVO) to its multiclass counterpart
where the label information encoding scheme allows the com-
putational complexity to remain the same to the binary case.
The main features of this technique are summarized as fol-
lows: (1) Only a subset of data are pre-selected to construct
the basis for kernel computation; (2) Simultaneous active
training set selection for all classes helps reduce complex-
ity meanwhile improving robustness; (3) With the proposed
active set selection criteria, inclusion property is verified
empirically. Inclusion property means that once a pattern is
excluded, it will no longer return to the active training set
and therefore can be permanently removed from the training
procedure. This property greatly reduce the complexity. The
proposed techniques are evaluated on standard multiclass
datasets MNIST, USPS, pendigits and letter which could be
easily compared with existing results.

Index Terms— RiSVO, kernel, multiclass classification,
large scale data, RKHS basis construction

1. INTRODUCTION

Multi-class classification problems are of growing importance
in a vast range of domains, such as handwriting identification,
medical applications, posture recognition, etc, where data fall
intoC categories forC > 2. In the literature, there are mainly
two ways of solving such problems:

(a) Dividing the task into several binary problems using bi-
nary classifiers such as SVM [17]. Typical approaches
for training and combining the binary classifiers are the
One-versus-All (OvA) [12] and All-versus-All (AvA)
[16] techniques.

(b) Direct extensions of binary classifiers using a global
objective function. Existing techniques can be found in
the literature, such as extensions of SVM [19], Neural
Networks [4], Decision Trees [5], K-Nearest Neighbors
[3], Naive Bayes [11], etc.

Techniques in category (a) enjoy the benefits of being in-
tuitive and straightforward. However, more training time is

required since more than one binary classifiers are needed,
ı.e. C for OvA and C(C−1)

2 for AvA. Nevertheless, classifiers
of AvA are in general of much smaller scales than OvA and
possibly result in less computations.

On the other hand, (b) has the following features:

• Compared to OvA, intrinsic structure within each class
is preserved and results in more balanced classifiers.
• A global optimization problem is formulated and train-

ing is carried out simultaneously for all the classes.
However, the potential drawback is that this typically
results in a huge number of parameters and constraints.
• Outputs for all classes usually have a fair comparison

and no normalization is needed.

Due to these properties, we are interested in finding a si-
multaneous technique without major increase in the complex-
ity compared to its binary version. To this end, we propose an
iterative technique extending [20] to handle multiclass case.
The reduction of computational complexity is summarized in
Table 1.

At each iteration k, given training size N , for m �
NS,k � NS,k−1 ≤ N and NS,0 = N ,

Procedure Complexity reduction
Active set select. Kernel eval: O(N2

S,k−1)→ O(N2
S,k)(Sec. 2.2.1)

Inclusion prop. Training: O(N3
S,k−1)→ O(N3

S,k)(Sec. 2.2.2)
RKHS basis Kernel eval: O(N2

S,k)→ O(NS,km)

select. (Sec. 3) Training: O(N3
S,k)→ O(m3)

The paper is organized as follows. First of all, the multi-
classification formulation is presented in Section 2. In Sec-
tion 3, we present a technique to construct the basis matrix
for kernel computations by using a subset of the training data.
Numerical results are shown in Section 4.

2. MULTICLASS RISVO FORMULATION

2.1. Formulation

Given training data xi, a nonlinear mapping ϕ : Rd → Rp
(d � p) maps training data xi to a high dimensional feature
space. Kernel tricks [15] are usually used when computations



in such high dimensional space are prohibitive. That is, in-
stead of explicitly constructing ϕ(xi), we replace all inner
products by k(xi,xi) = ϕ(xi)

Tϕ(xi), where k(·, ·) is a pre-
defined kernel function. Without ambiguity, we refer ϕi as
the training data for convenience. Given training data ϕi and
corresponding class label ti ∈ {1, ..., C}, from the represen-
ter theorem, the class prediction ŷ of an unseen data vector ϕ
is defined as:

ŷ = argmax
c
{
∑
ϕi∈G

A(i, c)ϕTi ϕ+ b(c)}, (1)

where A(i, c) is the (i, c)th entry of matrix A and b(c) is the

cth element of the bias vector b. Matrix
[
A

bT

]∗
is referred to

as the “solution matrix” learned from the training process. Set
G is a subset of the whole training data to construct the basis
for kernel computations. It is defined in Sec. 3.

Similar to RiSVO, the multiclass version is an iterative
method works as follows. Let matrix ΦM = [ϕm1

, · · · , ϕmM ],
∀ϕmi

∈ M ⊆ D, where D is the whole training set. At each
iteration k ≥ 1, the optimization problem is cast as[
Ak

bkT

]∗
= argmax

A , b

1

2

(
E(ξT ξ|ϕi ∈ Sk) + ρ‖ΦGA‖2

)
,

(2)
where Sk ⊆ Sk−1 is the active set defined in Section 2.2.1
with S0 = D, ρ the ridge parameter [9] E(·) the expecta-
tion operator and ‖ · ‖ denotes the Frobenius norm. Vector ξ
is called the slack vector. It is closely related to the coding
scheme of the label information. Note that although ξ is k
dependent, to simplify the notation, we only specify the step
number explicitly for Sk, but everything else follows.

Now let us define ξ. For each given training pattern ϕi ∈
Sk, let T i be a diagonal matrix and the entry T i(j, j) ={
+1 if ti = j

−1 otherwise
. and

λki = T i(A
(k−1)TΦT

Gϕi + b
(k−1)) (3)

The multiclass slack vector ξi is thus defined as:

ξi = e− λ
k
i (4)

where e is a all-one vector.
Let us define the kernel matrix KAB = ΦT

AΦB and
KA = ΦT

AΦA, E an all-one matrix, and NM the cardinality
of set M . Without loss of generality, we drop the iteration
number k, the solution of (2) can be found by taking the
derivative to zero, which results in[

Ak

bkT

]∗
=

{[
KS + ρI , e

]+
Π, for G = S

Ω+(KGS +E)Π, otherwise
(5)

where

Ω = [(KGS +E)KSG + ρKG, KGSe+NSe,] (6)

and Π = [T ie]ϕi∈S .
Therefore, the computational complexity scales asO(m3),

where m is the size of the basis ΦG in the Reproducing Ker-
nel Hilbert Space (RKHS) (cf. Sec. 3).

2.2. Active set selection and inclusion property

Two key ideas of multiclass RiSVO algorithm are active set
selection and the inclusion property, where the former im-
proves the classification performance and the latter reduces
computational complexity. Both properties are verified em-
pirically in Sec. 4.

2.2.1. Rules for Active Set Selection

Starting from S0 = D, at each iteration k ≥ 1, we select
the active set Sk ⊂ Sk−1 and the iterations are terminated
when Sk = Sk−1. The underlying idea is to improve ro-
bustness by discarding (i) the well classified patterns and (ii)
the “outliers”, i.e. the selected patterns need to fall between
two marginal hyperplanes. This idea is used by LASVM [2]
in binary classification, whereas we extend it to a multiclass
version, where the inclusion property is preserved. More pre-
cisely, for all ϕi ∈ Sk−1 and j ∈ {1, · · · , C}, the selection
criteria at step k are:

• Ck1 = {ϕi : γl < λki (ti) < γu}

• Ck2 = {ϕi : ζl < E(λki (j)|j 6= ti) < ζu}

where λki is defined in Equation (3) and λki (l) denotes the lth
entry. Parameters γl, γu, ζl and ζu are user defined marginal
boundaries, where ζl > γl, ζu < γu.

Set Ck1 means that for a training pattern ϕi from class c to
be selected, it has to fall between two hyperplanes λki (ti) =
γl and λki (ti) = γu for dimension ti. Similarly, Ck2 indi-
cates that the averaged position of ϕi on the other C − 1
dimensions should fall between E(λki (j)|j 6= ti) = ζl and
E(λki (j)|j 6= ti) = ζu. Since ti is the true label of data ϕi,
the condition ζl > γl, ζu < γu indicates that we care more
about the correct dimension ti.

The active set at iteration k for multiclass RiSVO is hence
defined as

Sk = Ck1 ∪ Ck2 . (7)

2.2.2. Inclusion Property

To guarantee and speed up convergence, we always search
among ϕi ∈ Sk−1 to identify Sk. This requires the valid-
ity of the Inclusion Property. That is, even we search among
all training data ϕi ∈ D at every iteration k, the following
property holds.

SK ⊆ SK−1 ( · · · ( S1 ( S0 (8)

where maximum iteration K is defined by user or the mini-
mum integer when SK = SK−1.

Equation (8) is called the Inclusion Property. Inclusion
property means that at each iteration k, the active set Sk
can be identified by searching within the previous active
set Sk−1. It means that once a pattern is removed from the
active set, it will no longer satisfy Eq. (7) at future iterations.
The sufficient condition for this property to hold will be pre-
sented in the full paper due to the limited scope. In this paper,
it is only verified empirically.



A summary of the implementation for Multiclass RiSVO
can be found in Algorithm Multiclass RiSVO and the code
will be available on the authors’ website shortly.

Algorithm Multiclass RiSVO

- Initialization: let S0 = D.
Define maximum iteration K.

- Repeat: iteration k

- Update
[
Ak

bkT

]∗
according to Equation (5)

- Compute ξi and λki from Equations (4) and (3)
- Identify Sk according to Equations (7) and (8).
- Stop if k = K or Sk = Sk−1

3. RKHS BASIS SELECTION FOR LARGE SCALE
DATA

In a linear classifier, we typically have the label estimation

ŷ = argmax
c
{wT

c ϕ+ b(c)}, (9)

where wc is the cth column of the decision matrix W . The
relation between Equation (9) and (1) can be explained
by the representer theorem [15], where the solution vec-
tor can be written as a linear combination of the training
data in the Reproducing Kernel Hilbert Space (RKHS), i.e.
W =

∑
ϕi∈G ϕiA(i, :). In another word, the set of vec-

tors G = {ϕ1, ϕ2, , ϕm} form a basis. Ideally speaking,
all the training data could be used to construct this basis.
However, from Equation (5), we know that the order of the
computational complexity depends on the size of the basis m.
Therefore, the computational complexity can be reduced by
constructing the basis using a subset of the training data. In
the literature, this is often referred to as the kernel approxi-
mation problem. The review of such techniques is out of the
scope. Related topics can be found in [14, 1, 7, 18, 10, 13]. In
the context of finding subspace basis, we develop a selection
technique based on subspace projection. By removing data
with respect to small (normalized) projection distance, the
subspace directions not “informative” enough are therefore
rejeccted. These directions are sometimes considered dom-
inated by noice. To fully explore the subspace concept, the
technique is analyzed from three perspectives: (1) numerical,
(2) basis reduction and (3) computation. Note that the “redun-
dant” samples are only discarded for the basis construction,
but still kept for training due to the rich label information.

Let us fix some notations before we proceed. Some might
be different from previous sections due to different purposes.
Let the basis matrix Φm = [ϕ(x1), ϕ(x2), · · · , ϕ(xm)]. De-
fine Km = ΦT

mΦm and Km(xi, xj) = ϕ(xi)
Tϕ(xj) the

(i, j)th entry of the m × m matrix. In the empirical space,
when a new pattern ϕ(xr) is included as a part of the basis,
the matrix Φm becomes Φm+1 and the corresponding ker-
nel matrix is denoted as Km+1. Finally, let vector km =

[Km(x1,xr) · · · Km(xm,xr)]
T .

3.1. Numerical perspective

First of all, numerical issues are discussed. Let Φ̃m =
[ϕ(xg1), ϕ(xg1), · · · , ϕ(xgm)] , gi ∈ N be an or-
thogonal basis in the intrinsic space and ∠(A,B) denote the
principal angle [8] between matricesA andB.

Definition 1 (Highly Redundant Pattern). Given a new pat-
tern xr, let Φm+1 =

[
Φ̃m ϕ(xr)

]
. Pattern xr is called

Highly Redundant (w.r.t. Φ̃m), if and only if |Km+1| = 0,
ı.e. ∠(Φm+1, Φ̃m) = 0.

The definition tells us that by including a highly redun-
dant pattern, the kernel matrix becomes rank deficient which
causes computational issues. Therefore, highly redundant
patterns should be discarded during basis construction. How-
ever, |Km+1| in Definition 1 is generally non-zero. In order
to have a meaningful numerical definition, relaxation needs
to be introduced, ı.e. practically speaking, xr is considered
Highly Redundant ifKm+1 is numerically rank deficient.

3.2. Basis reduction perspective

For large data set, the purpose of basis construction is not
only to avoid numerical issue, but also to reduce the size of
the basis in order to scale down the computations with pre-
served information. To this end, Empirical Redundancy is
introduced.

Definition 2. Given a pattern xr, let Φm+1 =
[
Φ̃m|ϕ(xr)

]
.

Pattern xr is called empirically non-redundant (w.r.t Φ̃m), if
and only if π

2 ≥ ∠(Φm+1, Φ̃m) > π
2 − θε for small θε ≥

0.

This leads us to Theorem 1.

Theorem 1. Given Φ̃m and pattern xr, xr is empirically
non-redundant w.r.t. Φ̃m iff∣∣∣∣∣kTm+1K̃

−1
m km+1

Km+1(xr,xr)

∣∣∣∣∣ < ε. (10)

for some small number ε ≥ 0.

Proof. We denote ϕ̃(xr) the projection of ϕ(xr) onto sub-
space Φ̃m, and (Φ̃

T

mΦ̃m)−1. Thus the angle between ϕ(xr)
and ϕ̃(xr) is computed as

θ = arg cos
ϕ(xr)

T ϕ̃(xr)

‖ϕ(xr)‖‖ϕ̃(xr)‖

where ϕ(xr)
T ϕ̃(xr) = kTm+1K̃

−1
m km+1

‖ϕ(xr)‖ =
√
Km+1(xr,xr)

‖ϕ̃(xr)‖ =

√
kTm+1K̃

−1
m km+1

This gives us cos2 θ =
∣∣∣∣kT

m+1K̃
−1
m km+1

Km+1(xr,xr)

∣∣∣∣. Since xr empir-

ically non-redundant, ı.e. π2 ≥ ∠(Φm+1, Φ̃m) ≥ π
2 − θε, we

have cos2 θ < ε for some small ε > 0. Thus it follows the
conclusion.



Due to the lack of space, the proof will be given in the
full paper. The theorem tells us that as a data selection rule
for basis construction, update Φ̃m+1 = Φm+1 is applicable
if Equation (10) holds true; otherwise, Φ̃m+1 = Φ̃m.
3.3. Computational perspective

However, with the increasing size of the basis, the compu-
tation of K−1m in Equation (10) becomes costly. By using
matrix inversion lemma [6], K−1m is updated in an iterative
fashion and there are only vector operations involved in the
computations.

K−1m =

[
K−1m−1 0

0 0

]
+

1

µ

[
−K−1m−1km

1

] [
−kTmK

−1
m−1, 1

]
where µ = Km(xr,xr) − kTmK̃

−1
m−1km. The implementa-

tion of updating the basis is summarized in Algorithm Basis
Construction (B.C.).

Algorithm Basis Construction (B.C.)
- Initialization:

Select the basis size m and a small number 0 < ε� 1.
Randomly select m0 patterns to initialize the basis matrix
Φ0 =

[
ϕ(xg1), · · · , ϕ(xgm0

)
]
.

ComputeK0, where K0(i, j) = K(xgi ,xgj ).
Let q = 0, r = 1, P 0 =K−10 .

- Step 1: For every new pattern xr, compute:

pr = P qk, δr =
kTpr

K(xr,xr)

where k ∈ Rmq×1 and k(i) = K(xgi ,xr).
- Step 2: If |δr| < ε, select the pattern xr and update:

Φq+1 = [Φqϕ(xgr )] , q = q + 1, mq = m0 + q.

P q =
[
P q−1 0
0 0

]
+

1

µ

[−pr
1

] [
−pTr 1

]
where µ = K(xr,xr)− kTpr (11)

Otherwise ignore the pattern.
- Step 3: if mq < m, set r ← r + 1 and go to Step 1;

otherwise, stop.

4. EXPERIMENTAL RESULTS

4.1. Multiclass RiSVO

In this section, multiclass RiSVO is evaluated on the data sets
MNIST, USPS, UCI letters and UCI pendigits. The parame-
ters are chosen by cross-validation using the training patterns
and testing error rates are presented in this section. The re-
sults and chosen parameters are summarized in Table 1 which
could be compared with other existing techniques [21, 22,
23]. For example, SVM gives 2.03% testing error rate on
dataset pendigits and 5.75% on letters, whereas our method
achieve 0.6% and 2.56%, respectively. If we compare the

number of support vectors, SVM has 1200 on pendigits and
8400 on letters, where multiclass RiSVO uses 1500 and 4000
basis vectors for representing the solution matrix. On the
other hand, multiclass RiSVO does not overperform SVM
on dataset MNIST and pendigits. Our guess is that RiSVO
is essentially a subspace approach, which is not designed for
very spase images without any preprocessing. However, if we
take into consideration the computational complexity, for C
classes, multiclass RiSVO still scales as O(m3). The conver-
gence of three data sets are shown in Fig. 1. The advantages
with respect to the computational efficiency are summarized.

a. From computational perspective, multiclass RiSVO
scales as O(m3), which remains the same as binary
RiSVO, ı.e. the order of complexity does not depend
on the number of classes.

b. Alg. Basis Construction (B.C.) offers a fast and numer-
ically robust tool of reducing the basis size with pre-
served information.

c. By using the proposed active set selection criteria,
the inclusion property is empirically verified on all
datasets. That is, when a data set is excluded at step k0,
it does not come back to the active set for k > k0.

d. Parallelizablility for big data computations. It fits the
framework of Map-Reduce as presented in [20], where
the data set is divided into M chunks and computations
are carried out independently. The final result of mul-
ticlass RiSVO is obtained by various methods, such as
averaging over all M processors.

Notes on selecting hyperparameters γl, γu, ζl, ζu: These
parameter are chosen from γl, γu ∈ {±1,±1.1,±1.2} and
ζl, ζu ∈ {±0.5,±0.6,±0.7}. For every pattern ϕ, by setting
γl < ζl and γu > ζu, we are assignning more weights to the
“correct” position ti.

m 100 700 1000 1300 1600 1900
Random 10.12 4.20 3.57 3.38 3.0 2.99
Alg.B.C. 9.78 3.98 3.51 3.33 2.95 2.92

Table 2. Testing error comparison between random basis se-
lection and Alg. Basis Construction (B.C.).

4.2. RKHS basis construction

By reducing the size of the basis, m, the computations of
Multiclass RiSVO is reduced, since the complexity mainly
depends on m. However, a random data selection might de-
grade the performance. A breif comparison between random
selection and Alg. Basis Construction (B.C.) in terms of clas-
sification error on data set MNIST is shown in Table 2. Note
that Alg. Basis Construction (B.C.) scales as O(m2ND).
Notes on selecting ε: according to Section 3.1, ε shouldn’t
be chosen too large, ı.e. ε → 1. Otherwise at the next iter-
ation, δr → 0 and 1

µ → +∞. The problem will thus become
ill-conditioned. Therefore, 0 < ε � 1 (c.f. Algorithm Basis
Construction (B.C.) and Sec.3.1).



Data Parameters
Perr

Name C Training data Kernel Basis Φ(G) RiSVO (Eq.2, 7)
m ε (γl, γu) (ζl, ζu) ρ

MNIST[21] 10 784× 60000 poly, d = 2 3500 0.5 (−1.1, 1.1) (−0.5, 0.5) 0.001 2.33%
USPS[22] 10 256× 3035 poly, d = 2 3035 - (−1.1, 1.1) (−0.5, 0.5) 0.001 4.81%

UCI Letters[23] 26 16× 20000 rbf, σ = 5 4000 0.3 (−1.2, 1.2) (−0.7, 0.7) 0.001 2.56%
UCI pendigits [23] 10 16× 1500 rbf, σ = 1 1500 - (−1, 1) (−0.5, 0.5) 0.001 0.60%

Table 1. The data sets are from standard multiclass databases, which can be found in the corresponding references.
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Fig. 1. Convergence of number of discarded patterns and classification error on the training set for three data bases.

5. CONCLUSION

In this paper, we present a multi-classification technique aim-
ing for high efficiency and robustness. The technique is based
on three improtant features. (1) Active set seleciton for im-
proving robustness; (2) The empirical validity of Inclusion
property for reducing complexity; and (3) SelectionG ( D to
construct the basis for representing the solution matrix. This
can be viewed as a preselection of the support vectors from a
subspace projection viewpoint. As a future direction, we will
provide further empirical and theoretical analysis on multi-
class RiSVO.
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