
RECOVERY OF CORRELATED SPARSE SIGNALS FROM UNDER-SAMPLED
MEASUREMENTS

Zhaofu Chen1, Rafael Molina2, Aggelos K. Katsaggelos3

1,3 Electrical Engineering and Computer Science Dept., Northwestern University, Evanston, IL, USA
2 Dept. de Ciencias de la Computación e I. A., Universidad de Granada, Granada, Spain

ABSTRACT
In this paper we consider the problem of recovering tempo-
rally smooth or correlated sparse signals from a set of under-
sampled measurements. We propose two algorithmic solu-
tions that exploit the signal temporal properties to improve the
reconstruction accuracy. The effectiveness of the proposed al-
gorithms is corroborated with experimental results.

Index Terms— Sparse signal recovery, multiple measure-
ment, greedy algorithm, convex relaxation method

1. INTRODUCTION

Consider the measurement system expressed as
y = Φx + n, (1)

where the signal of interest x ∈ RN×1 undergoes a linear
transformation Φ ∈ RM×N and is corrupted by additive noise
n ∈ RM×1. Depending on the applications, the transfor-
mation Φ can be a dictionary in sparse signal representation
problems [1], a measurement system in compressive sens-
ing [2], a degradation process in image processing [3], a steer-
ing matrix in source localization problems [4], etc.

In general y is an under-sampled measurement, i.e., M ≤
N . In such cases the recovery of x from the noisy y is an ill-
posed problem, i.e., there exist infinite number of solutions.
A common approach to this problem is to constrain the so-
lution space by incorporating prior knowledge about x. As is
well known, most natural signals are sparse either in its native
domain (e.g., distributed sources in space) or in certain basis
(e.g., image coefficients in the wavelet basis). Without loss
of generality, we assume x is sparse, i.e., ||x||0 � N , where
|| · || denotes the `0-(pseudo)norm.

Sparse signal recovery with single measurement as mod-
eled by (1) is well-studied. Broadly, three categories of algo-
rithms exist for solving such problems. Greedy algorithms,
such as Matching Pursuit [5] and Orthogonal Matching Pur-
suit [6,7] seek the “most representative” subset of columns in
Φ to approximate y. Relaxation-based approaches, such as

This work has been partially supported by a grant from the Department
of Energy (DE-NA0000457), the Spanish Ministry of Economy and Com-
petitiveness under project TIN2010-15137, the European Regional Develop-
ment Fund (FEDER), and the CEI BioTic at the Universidad de Granada.

LASSO [8] and FOCUSS [9], replace the `0-(pseudo)norm
with the sparsity-promoting `p-(pseudo)norm (p ≤ 1) and
solve a regularized fitting problem. Bayesian approaches
adopt sparsity-promoting priors in hierarchical models and
employ statistical inference to obtain estimates of x [10, 11].

When the measurement process occurs at T time in-
stances, the data model in (1) is expanded as

Y = ΦX + N, (2)
where Y ∈ RM×T contains the measurements {y·i}Ti=1 as its
columns, and X ∈ RN×T contains the signals {x·i}Ti=1 as its
columns, respectively.

Given the T measurements, various strategies can be ap-
plied depending on the dynamics of X = [x·1, · · · ,x·T ]. On
one end, for static signals {x·i} and independent noise, av-
eraging over the columns of Y yields ȳ =

∑
i y·i/T with

improved signal-to-noise ratio (SNR), which can then be con-
sidered as a single measurement. On the other end, if x·i is
assumed independent of each other, the problem reduces to T
single-measurement sparse recovery problems, each of which
can be solved separately.

Between these two ends, it is common that {x·i}, though
non-static, share a fixed sparsity pattern, i.e., the locations
of the nonzeros in x·i do not change. This is known as the
Multiple Measurement Vector (MMV) problem, where the
goal is to recover a row-wise sparse X from Y. Algorithms
for solving the MMV problem can also be broadly catego-
rized as greedy [12], relaxation-based [13, 14], or Bayesian
approaches [15].

While the existing algorithms induce row-sparsity in X,
they do not fully exploit the information in X, and in partic-
ular, the correlation within the nonzero rows of X. Utilizing
such intra-row structure can potentially lead to improved re-
covery performance. In [16] a Bayesian model with a greedy
inference procedure is proposed to achieve row-sparsity in
X while promoting smoothness of the nonzero rows in X.
Experimental results have confirmed that such an approach
can yield higher recovery accuracy, although at the cost of
increased computation.

In this paper, we propose a greedy algorithm and a
relaxation-based algorithm to find X that jointly meets the
following criteria:
1. X fits the measurement Y well, i.e., ||Y−ΦX||2F is small,



where || · ||F denotes the matrix Frobenius norm.

2. X is row-wise sparse, i.e., the number of nonzero rows in
X is much smaller than N .

3. Nonzero rows of X are smooth or correlated.

The rest of the paper is structured as follows. Section 2
presents the principles of the greedy algorithm. Section 3 for-
mulates a least-squares fitting problem with relaxed regular-
ization, and discusses an efficient algorithm to solve it. Nu-
merical examples corroborating the effectiveness of the pro-
posed algorithms are shown in Section 4. Finally, the paper is
concluded in Section 5.

Notation: Matrices and vectors are denoted by uppercase
and lowercase boldface letters, respectively. For a matrix X,
xi· denotes its ith row, x·j denotes its jth column, and Xij

denotes its (i, j)th element, respectively.

2. GREEDY ALGORITHM

Consider the following optimization problem

min
X

{
c||Y −ΦX||2F +

∑N
i=1 xi·PxT

i·

}
s.t.: number of nonzero rows in X ≤ S

, (3)

where ||Y−ΦX||2F quantifies measurement fidelity, xi·PxT
i·

models our prior knowledge about the intra-row structure of
X, and c is a parameter balancing these two factors in the cost
function. The user-defined parameter S determines the level
of sparsity in X, as well as serves as a convergence criterion
as is presented shortly. The symmetric positive-semidefinite
matrix P ∈ RT×T can be used to impose a wide range of
structural properties on the nonzero rows of X. For example,
if from prior knowledge xi· is smooth, P can be constructed
as P = DTD, where D ∈ RT×T with

Dij =

 −2, if i = j
1, if |i− j| = 1
0, else

(4)

implements a second-order difference operator. Non-smooth
xi· with abrupt variations will result in larger value of
xi·PxT

i· = ||DxT
i· ||22 and hence be penalized more than

smooth xi·. As another example, if we know the statistical
properties, e.g., the correlation among the elements of xi·, P
can be set as proportional to the precision (inverse of covari-
ance) matrix of xi·, which penalizes xi· that deviates much
from the statistical model.

Let Ω ⊆ {1, 2, . . . , N} be a subset with cardinality S,
i.e., |Ω| = S. Denote by Φ·Ω the M × |Ω| sub-matrix of
Φ consisting of its columns indexed by Ω. Solving (3) glob-
ally requires finding the optimal S columns of Φ. Since the
number of ways to choose S out of N columns grows combi-
natorially with N , the problem in (3) is NP-hard. Therefore
we can only find sub-optimal solutions to it. In this paper we
present an iterative greedy algorithm that instead of finding
S columns of Φ all at once, finds one column at a time and
incrementally populates Ω.

The algorithm starts with Ω = ∅ and Ωc = {1, 2, . . . , N},
and initializes the residual R = Y. In the iterations the al-
gorithm fits the residual by incrementally selecting columns
from Φ and optimizing the corresponding coefficients in X.

Specifically, at each iteration, in order to find a locally
optimal column of Φ, the algorithm scans through i ∈ Ωc

and solves a series of simple local optimization problems
pi = min

x∈R1×T

{
c||R− φ·ix||2F + xPxT

}
, i ∈ Ωc, (5)

where φ·i is the ith column of Φ. Setting the gradient of the
quadratic cost function in (5) with respect to x to 0, the min-
imizer x? is found to be

x? = φT
·iR

(
||φ·i||22I + c−1P

)−1
. (6)

After obtaining {pi}i∈Ωc from (5), the index with the low-
est cost is selected, and the sets Ω and Ωc are updated accord-
ingly.

At the end of an iteration, the contribution from the cur-
rently selected Φ·Ω is removed from R via the following op-
timization

XΩ = arg min
X∈R|Ω|×T

c||Y −Φ·ΩX||2F +

|Ω|∑
i=1

xi·PxT
i·

 , (7)

which, after the gradient of the cost function with respect to
X is set to zero, leads to the following equation(

ΦT
·ΩΦ·Ω

)
XΩ + c−1XΩP = ΦT

·ΩY . (8)

The matrix equation in (8) is known as the Sylvester equation
in control theory, and can be solved using the Bartels-Stewart
(B-S) algorithm. With XΩ, the residual is updated as

R = Y −Φ·ΩXΩ . (9)
This greedy algorithm terminates after S iterations, at

which point the solution X is obtained by setting its Ω-
indexed rows to XΩ and the other rows to zero.

The pseudocode is listed in Algorithm 1.

Algorithm 1 The greedy algorithm

1: Inputs: Y ∈ RM×T , Φ ∈ RM×N , S, c
2: Outputs: Ω, X ∈ RN×T
3: Initialize: Ω = ∅, Ωc = {1, 2, . . . , N}, R = Y, s = 1
4: while s ≤ S do
5: i? = arg min

i∈Ωc

min
x∈R1×T

{
c||R− φ·ix||2F + xPxT

}
6: Ω← Ω ∪ {i?}, Ωc ← Ωc \ {i?}
7: XΩ = arg min

X∈R|Ω|×T

{
c||Y −Φ·ΩX||2F +

∑|Ω|
i=1 xi·PxT

i·

}
8: R = Y −Φ·ΩXΩ
9: end while

10: Let X be an N × T all-zero matrix.
11: Set Ω-indexed rows of X to XΩ.

3. RELAXATION-BASED ALGORITHM

In this section we present a relaxation-based approach to
find a solution X that satisfies the criteria set forth in Sec-
tion 1. Specifically, this approach formulates a regularized



fitting problem, where the regularization term incorporates
the properties of X. We solve this regularized fitting problem
by adopting the Alternating Directions Method of Multipliers
(ADMM) framework.

Consider the following unconstrained optimization

min
X∈RN×T

{
c

2
||Y −ΦX||2F +

N∑
i=1

||xi·||P

}
, (10)

where
||xi·||P = (xi·PxT

i·)
1/2 (11)

denotes the P-weighted norm. Note when P = I, (11) re-
duces to the conventional `2-norm, and the regularization
term in (10) reduces to the `1`2-norm of X.

As is known, the `1`2-norm can be used to find row-wise
sparse X for the under-determined system in (2). However,
the `1`2-norm does not assume any structural property of the
nonzero rows in X. In contrast, the regularization term in
(10), i.e., the `1-norm of the P-weighted `2-norms, both pro-
motes row-wise sparsity in X and encourages the nonzero
rows of X to comply with the smoothness or structural prior
knowledge.

In order to solve the problem in (10), we employ the
ADMM framework. ADMM is a generic primal-dual pro-
cedure based on the augmented Lagrangian, and has been
successfully applied to a wide range of problems [17].

Since the cost function in (10) is convex in X, in prin-
ciple we can apply standard algorithms, such as subgradient
method, to find a global minimum. Alternatively, we can de-
couple the two terms in the cost function by introducing an
auxiliary primal variable Z ∈ RN×T and the associated con-
straint as follows

min
X,Z

{
c
2 ||Y −ΦX||2F +

N∑
i=1

||zi·||2
}

s.t.: Z = XP1/2,

(12)

where P1/2 is the positive-semidefinite square root of P. It
is clear that (12) is equivalent to (10). This decoupling of
variable yields simpler and more tractable iterations.

To solve the constrained problem in (12), we associate a
dual variable G ∈ RN×T with the constraint. The augmented
Lagrangian function is then defined as

Lρ(X,Z,G) = c
2 ||Y −ΦX||2F +

N∑
i=1

||zi·||2

+ 〈G,Z−XP1/2〉+ ρ
2 ||Z−XP1/2||2F,

(13)
where 〈, 〉 denotes the inner product of two matrices with the
same dimension, and ρ > 0 is called the penalty parameter.

The ADMM procedure consists of the following primal-
dual updates

Xk+1 = arg min
X

Lρ(X,Z
k,Gk) (14)

Zk+1 = arg min
Z

Lρ(X
k+1,Z,Gk) (15)

Gk+1 = Gk + ρ(Zk+1 −Xk+1P1/2), (16)
where k is the iteration index. It is clear that ADMM imple-

ments block descent with respect to the primal variables X
and Z, with updates performed on the dual variable G. By
separating the updates of X and Z, the per iteration updates
are simpler and analytically more tractable.

The minimization (14) can be carried out by setting the
gradient of Lρ(X,Zk,Gk) with respect to X to zero, which
results in
cΦTΦXk+1+ρXk+1P = (Gk+ρZk)P1/2+cΦTY . (17)

Again, this is a Sylvester equation that can be solved for Xk+1

using the B-S algorithm.
To solve (15), we note that
Lρ(X

k+1,Z,Gk)

=
∑N
i=1 ||zi·||2 + 〈Gk,Z〉+ ρ

2 ||Z−Xk+1P1/2||2F + C

=
∑N
i=1 ||zi·||2 + ρ

2 ||Z− (Xk+1P1/2 − ρ−1Gk)||2F + C

=
∑N
i=1 ||zi·||2 + ρ

2 ||Z−H||2F + C

=
∑N
i=1

{
||zi·||2 + ρ

2 ||zi· − hi·||22
}

+ C,
(18)

where we have defined H = Xk+1P1/2 − ρ−1Gk for nota-
tional clarity, and C is a constant independent of Z.

Two observations follow from (18). First, the cost func-
tion Lρ(Xk+1,Z,Gk) is separable across the rows of Z, and
therefore the minimization reduces to N separate minimiza-
tion problems in {zi·}. Second, the functional form on the
last line of (18) is smooth in zi· except at the origin zi· = 0.
With some algebra, the minimizer can be found to be

zi· =

{
hi·

(
1− 1

ρ||hi·||2 }
)
, ||hi·||2 > ρ−1

0, else
. (19)

From (19) we note that the update rule for Z is simply soft-
thresholding applied on its rows. This is analogous to the
element-wise soft-thresholding performed when solving the
`1-norm regularized sparse vector recovery problem.

The pseudocode for the relaxation-based algorithm is
listed in Algorithm 2.

Algorithm 2 ADMM solver for the regularized fitting problem

1: Inputs: Y ∈ RM×T , Φ ∈ RM×N , ρ, c
2: Outputs: X ∈ RN×T
3: Initialize: X0 = Z0 = G0 = 0, k = 0
4: while not converged do
5: Update primal variable Xk+1 by solving (17)
6: Update primal variable Zk+1 using (19)
7: Update dual variable Gk+1 using (16)
8: k ← k + 1
9: end while

10: Set X = Xk

4. NUMERICAL EXAMPLES

In this section we demonstrate the performance of the pro-
posed algorithms (denoted by “Greedy” and “ADMM” re-
spectively) with experimental results. For validation and
comparison, we also include in the examples the follow-



ing existing approaches: M-FOCUSS [13] (with p = 0.8),
M-BP [14], and M-SBL [15]. For M-FOCUSS and M-BP,
implementations from the Multiple-Spars Toolbox [18] were
used, and for M-SBL the implementation obtained from the
authors’ website was used. For all algorithms considered
herein, the parameters were empirically tuned to yield the
best results. Denote by X and X̂ the ground truth and the
reconstructed signal, respectively. The reconstruction error is
quantified as ε = ||X− X̂||2F/||X||2F.

We first demonstrate the capability of the proposed algo-
rithms in reconstructing smooth signals from noisy measure-
ments. We considered problems with measurement size M
varying from 40 to 100, while the dimensions of the latent
signal X were fixed at N = 200 and T = 50. Two sparsity
levels of X were considered, e.g., either 5 or 10 out of the
200 rows of X were nonzeros. Each nonzero row of X was
generated as a Hanning-window tapered sinusoid, where the
number of periods was uniformly drawn between 1 and 3, and
the phase was uniformly distributed between 0 and π; see Fig-
ure 2(a) for an example. The transformation Φ was generated
according to a uniform spherical ensemble, i.e., each φ·i was
independently drawn from a uniform distribution on the M -
sphere with radius 1. Independent and identically distributed
Gaussian noise N was added to the measurement, resulting
an SNR at 10 dB.

To model the smoothness of the nonzero rows of X, we
used P = DTD with D defined in (4). Reconstruction er-
rors averaged over 100 random runs are shown in Figure 1.
As we see, the proposed methods outperform the existing
approaches under a wide range of experimental conditions.
Comparing the two proposed algorithms, we see that ADMM
is more robust to the lack of measurements than the greedy
algorithm, while the latter yields lower reconstruction error
when sufficient number of measurements are available.
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(a) 5 nonzero rows in X
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(b) 10 nonzero rows in X

Fig. 1: Reconstruction error v.s. number of measurements

The benefit of incorporating intra-row smoothness to sig-
nal recovery is clear when we examine the waveforms in Fig-
ure 2. In Figures 2(b)-(f), we use colored curves to denote the
rows of X̂ corresponding to the true nonzero indices, and use
black curves to denote the remaining rows. As is evidenced by
the figures, both of the proposed algorithms and M-FOCUSS
can accurately identify the nonzero rows of X, while the re-

constructions by M-SBL and M-BP have a number of spuri-
ous signals with very small but nonzero amplitudes. In ad-
dition, it is clear that by using smoothness-promoting regu-
larizations in (3) and (10), the proposed methods yield more
accurate estimates of the latent signals, while the other ap-
proaches suffer from over-fitting the noisy measurements.
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(a) Original signal
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(b) Greedy algrithm
(ε = 0.0041)
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(c) ADMM
(ε = 0.0067)
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(d) M-FOCUSS
(ε = 0.019)
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(e) M-SBL
(ε = 0.033)
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(f) M-BP
(ε = 0.051)

Fig. 2: Examples of reconstructed smooth signals with reconstruc-
tion errors.

Since over-fitting is an important issue when noise is
present, it is interesting to examine how noise level affects
the algorithmic performance. In this experiment, we set
M = 40 and the number of nonzero rows in X to be 5. Noise
level was varied to yield a range of SNR values from 5 dB
to 40 dB, which is of practical interest for applications such
as EEG/MEG signal processing. As can be seen in Figure 3,
both of the proposed methods give significantly lower recon-
struction errors than the alternative approaches, especially at
low SNR conditions. The robustness to noise is attributed to
the incorporation of prior smoothness knowledge.
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Fig. 3: Reconstruction error v.s. SNR

In addition to the sinusoid signals, we have considered X
generated via first-order auto-regressive (AR) processes, i.e.,
Xij = aXij−1+Eij , where a ∈ [0, 1) controls the correlation
between adjacent samples in xi· and Eij is a sample from the
standard Gaussian distribution. The AR signals, though not
smooth, have well defined correlation structure, which can



be exploited by setting P to be proportional to the precision
matrix of xi·.

In this experiment, 5 out of the 200 rows of X were gen-
erated as realizations of 50-sample AR processes, where the
parameter a was varied from 0.1 to 0.8. The number of mea-
surement M was kept at 40. Figure 4 shows the reconstruc-
tion errors averaged over 100 experimental runs. As can be
seen, the proposed approaches are among the best in terms of
reconstruction performance.
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Fig. 4: Reconstruction error v.s. correlation

5. CONCLUSIONS

In this paper we considered the sparse signal recovery prob-
lem from a set of under-sampled measurements, where the
sparse signals of interest are temporally smooth or correlated.
We proposed a greedy algorithm and a relaxation-based al-
gorithm that both incorporate prior knowledge about the sig-
nal properties. Effectiveness of the proposed algorithms have
been demonstrated with numerical examples.
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