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ABSTRACT 
 

In this work, the estimation of the Directions of Arrival 

(DOAs) of multiple source signals from a single observation 

vector is considered. In particular, the estimation, detection 

and super-resolution performance of three algorithms based 

on the theory of Compressed Sensing (the classical l1-

minimization or LASSO, the fast smooth l0-minimization, 

and the SPICE algorithm) are analyzed and compared with 

the classical Fourier beamformer. This comparison is car-

ried out using both simulated data and real sonar data. 

 

Index Terms: Compressive Sensing, DOA estimation, 

Fourier Beamformer, Super-resolution, Sonar. 

 

1. INTRODUCTION 
 

The problem of estimating the Directions of Arrival 

(DOAs) of a certain number of sources has been an active 

research area for decades [1], [2], with a huge variety of 

applications. Due to its fundamental importance, many 

DOA estimation algorithms have been proposed in the liter-

ature. In brief, the estimation methods can be categorized in 

two large classes: the non-parametric (spectral-based) algo-

rithms and the parametric algorithms [2]. The non-

parametric algorithms (e.g. Fourier and Capon) exploit some 

spectrum-based function of the parameters to be estimated, 

e.g. the DOAs. The parametric techniques, e.g. MUSIC, 

Deterministic Maximum Likelihood (DML) [3] and Sto-

chastic ML (SML) [4] algorithms, on the other hand, fully 

exploit the statistical characterization of the measurement 

model. The latter approach often guarantees higher estima-

tion performance than the spectral-based methods, albeit at 

the expense of an increased computational complexity.  

However, almost all these algorithms have to work in the 

so-called “asymptotic region”, i.e., they need high SNR 

values and a large number of snapshots in order to provide 

reliable estimates. In some applications, e.g. sonar applica-

tions, due to physical constraints, only a very small number 

of snapshots or, in the worst case, a single snapshot is avail-

able for DOA estimation. In the single snapshot scenario, 

adaptive algorithms (e.g. Capon, MUSIC, DML and SML), 

that rely on an estimate of the noise covariance matrix, can-

not be applied. Recently, new spectral-based estimation 

algorithms, based on the emerging field of the Compressed 

Sensing (CS) theory have been proposed [5]. In this paper, 

the statistical properties of three CS-based beamformers 

(CSB), the l1-minimization or LASSO, the fast smooth l0-

minimization, and the SPICE algorithm will be investigated. 

The analysis is carried out in the single snapshot scenario, 

which is of practical relevance in many sonar applications. 

The focus here is on three statistical properties: (i) the effi-

ciency in the DOA estimation; (ii) the Receiver Operating 

Characteristic Curves (ROC); and (iii) the resolution capa-

bility. The simulation results will be verified also using a 

real sonar dataset. 

 

2. THE MEASUREMENT MODEL 
 

Assume a Uniformly Linear Array (ULA) of N omni-

directional sensors spaced by d and K narrowband sources 

impinging on the array from conic angles 
1

{ }K

k k
θ =

 . Moreo-

ver, suppose that only one snapshot is collected at the output 

of the matched filter for each range cell. The vector snap-

shot can be modeled as [1], [2]: 
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sin

k k
dν λ θ=  is the spatial frequency, λ0 is the 

wavelength of the transmitted signal, 

( ) [1, exp( 2 ), , exp( 2 ( 1) )]T

k k kj j Nν πν π ν= −v �  is the N×1 

steering vector at the direction 
k

θ  and n is the complex N×1 

measurement noise vector (either Gaussian or non-

Gaussian) with zero-mean and covariance matrix C. Finally, 

1{ }
K

k k
ρ =  are complex scalars, each of which can be modeled 

as an unknown factor of the form kj

k k e
ϕρ ρ= , where the 

phase φk is a uniformly distributed random variable (r.v.) in 

[0,2π) and (i) the magnitude |ρk| is a deterministic parameter, 

or (ii) the magnitude |ρk| is a Rayleigh r.v. with power 
E{|ρk|

2
}=2σρ

2
, which is equivalent to assuming that ρk is a 

complex, zero-mean, Gaussian r.v. with variance 
2

ρσ , i.e. in 

shorthand notation 2(0, )ρρ σ∈CN . 

 

3. BRIEF DESCRIPTION OF THE ALGORITHMS 
 

In this section, the classical Fourier beamformer (FB) 

and the three CSB are described and compared.  



3.1 The Fourier Beamformer 
 

Under the white noise and single deterministic signal 

model assumptions, the ML estimator for ν  is given by the 

location of the maximum of the data Periodogram [1], [2]: 
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This estimator is known as the Fourier beamformer (FB). 

pF(ν) is usually evaluated using the Fast Fourier Transform 

(FFT) on a discrete set of spatial frequencies | |

1{ }j jν ϒ
=ϒ =  , 

where |ϒ| is the cardinality of the set ϒ. Generally, |ϒ| is 

chosen to be equal to N as a consequence of the low resolu-

tion of the Fourier beamformer.  

 

3.2 The CS formulation of the DOA estimation problem 
 

As shown in [5], the measurement model in eq. (1) can 

be recast in a “sparse” representation by defining an 

overcomplete dictionary A(Ω) of steering vectors evaluated 

over a set of possible spatial frequencies Ω={ν1,…,νG}. In 

general, the true source spatial frequencies could not belong 

to this set, since Ω is arbitrarily chosen without any a priori 

knowledge on 
1{ }

K

k k
ν = . However, in order to guarantee a 

coherence between the signal in eq. (1) and the CS-like 

signal model, we assume that 1
{ }K

k k
ν = ⊂ Ω . The effects of 

the violation of this assumption (called off-grid effects) are 

discussed later on, in Section 4.1. Then, the source signal 

has to be recast as a G×1 column vector x where the g
th 

entry, i.e. xg, is equal to ρg if the source has a spatial fre-

quency equal to νg and zero otherwise. Since the cardinality 

G of the dictionary, i.e. the number of grid points used to 

cover the spatial frequency space, is much larger than the 

number K of possible sources, then the vector x is sparse. 

Finally, the measurement model of eq. (1) can be recast in 

the well-known linear CS measurement model: 
 

 ( ) .= Ω +y A x n  (3) 

Estimating the spectrum-like function 
2

ˆ( ) ( )
CS

p Ω = Ωx  

from eq. (3), is equivalent to estimating the spatial energy as 

a function of the set of assumed spatial frequencies Ω. Then, 

by assuming to have a single source in the scenario (K=1), a 

CS-based DOA estimator is given by: 
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= Ω = Ωx . (4) 

In the following, three different methods to estimate x 

from the measurement vector y are discussed and compared.  

 

3.2.1 The l1-minimization (L1) algorithm 

In its most general form, finding an estimate of x, from 

the measurements in eq. (3), belongs to the well-known 

class of constrained optimization problem that can be solved 

using a LASSO (Least Absolute Shrinkage and Selection 

Operator) solver (see e.g. [6]): 
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One of the big advantages of the LASSO algorithm is 

that it should promote sparse solutions irrespective of the 

particular noise distribution function. On the other hand, the 

LASSO solver requires the setting of many additional pa-

rameters that have to be selected heuristically by the user. 

An example of a critical parameter is the threshold value δ 

in the constraint of eq. (5). Clearly, δ is a function of the 

noise covariance matrix C that is, in general unknown. 
 

3.2.2 The smooth l0-minimization (SL0) algorithm  

The SL0 algorithm is a suboptimal algorithm based on a 

continuous approximation of the l0 norm [7]. Instead of a 

problem similar to the one in eq. (5), in [7] the authors pro-

pose to solve the following problem: 
 

 ˆ ( ) arg min ( ) s.t. ( )
G

F
∈

Ω = Ω =
x

x x A x y
�

 (6) 

where F is some continuous function that approximates the 

l0 norm. Of course, the SL0 is a suboptimal algorithm for 

the DOA estimate. In fact, as can be seen from eq. (6), the 

SL0 algorithm does not take into account the measurement 

noise. However, the SL0 algorithm has two advantages with 

respect to the classical LASSO algorithm: (i) the numerical 

minimization algorithm (a gradient-based algorithm) is very 

fast and (ii) the SL0 algorithm requires the choice of a very 

small number of critical parameters. 
 

3.2.3 The SPICE algorithm 

The SPICE (SParse Iterative Covariance-based Estima-

tor) algorithm was first derived for the single snapshot case 

[8] and then generalized to the multi-snapshot case [9]. The 

SPICE algorithm has a different and stronger statistical 

foundation with respect to the L1 or SL0 algorithms and it 

does not require any difficult and heuristic selection of pa-

rameters, since they are jointly estimated during the itera-

tion. Suppose that the noise vector n in the measurement 

model in eq. (3) is a zero-mean, Gaussian distributed com-

plex random vector, with diagonal covariance matrix 

C=diag(σ1
2
,…,σN

2
). By using the same assumptions intro-

duced in Sec. 2, the covariance matrix of the measurement 

vector y can be expressed as: 
 

 { } 2 2

1

1

( ) ( ) diag( , , )
G

H H

g g g N

g

E p ν ν σ σ
=

= = +∑R yy v v … , (7) 

where pg is equal to (i) |xg|
2 

for a deterministic signal model 

and (ii) 2σρ
2 

for the random signal model. The parameters to 

be estimated are then the spectrum-like function 

1( ) { }
G

SPICE g gp p =Ω �  and the noise covariance matrix C. The 

joint estimate of these parameters is obtained by minimizing 

the following covariance-based objective function [8]: 
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−
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where ║·║F is the Frobenius norm. The minimization prob-

lem in eq. (8) has an iterative closed form solution [8]. In-

terestingly, even if they have been derived from two com-

pletely different perspectives, the SPICE and the L1 algo-

rithms are strictly related. This connection has been exten-

sively discussed in [10]. 

 

4. STATISTICAL PERFORMANCES 
 

In this section, we investigate the estimation, detection 

and super-resolution performance of the CSB DOA estima-

tors in terms of 
2 1 2ˆRMSE {( ) }E ν ν= − , ROC curves and 

Probability of Resolution (see Sect. 4.3) respectively. The 

single snapshot scenario is assumed and two different kinds 

of disturbance are used: Gaussian white noise and Gaussian 

white noise plus Gaussian spatially-correlated clutter. In 

particular, the clutter is modeled as an autoregressive (AR) 

process of order 1, so the covariance matrix of the disturb-

ance n is: 

 
( )

2

2 2

a) , white noise only

b) , noise plus clutter

n

n c

σ

σ σ ξ


= 

+

I
C

I Q
. (9) 

 

In all our simulation, we assume an array of N=32 ele-

ments, while the number of grid-points is |Ω|=|ϒ|=G. More-

over, the nominal value of the target spatial frequency ν  is 

chosen uniformly at random in [-0.5,0.5) and the number of 

independent Monte Carlo runs is 10
4
. 

 

4.1 RMSE on DOA estimation 
 

In Fig. 1, the comparison among the RMSE of the four 

beamformers and the Cramer-Rao Lower Bound (CRLB) is 

shown for the spatially-correlated clutter scenario (eq. (9.b)) 

and a deterministic source model. The CRLB has already 

been derived as [11]: 
 

 ( ) ( )
1

2 1 2 1 2CRLB 2 Hν ρ
−

− −= d C ΣC d  (10) 

where 1 2 1 1 1 2( )H H− − − −= −Σ I C v v C v v C , ν= ∂ ∂d v  and in 

the steering vector v, the dependence of the actual spatial 

frequency is omitted for notation simplicity. The measure-

ment model in eq. (3) is assumed with the following param-

eters: G=2
10

, σn
2
=1, [Q(ξ)]ij=(ξ

|i-j|
)

*
, ξ=0.98e

jϑ where ϑ is a 

uniformly distributed random variable in [0,2π) and σc
2 

is 

chosen accordingly to the given Clutter-to-Noise Ratio 

(CNR) value: σc
2
=CNRσn

2
. In this simulation CNR = 15db. 

Finally, the Signal-to-Interference-plus-Noise Ratio can be 

defined as SINR=|ρ|
2
/(σn

2
+σc

2
).  

From Fig. 1 we get that the FB and the CSBs have simi-

lar performance in terms of RMSE. It can also be noted that, 

below 25dB of SINR (and for a CNR = 15db), all the esti-

mators are in the “low SNR” region where the CRLB is not 

tight. Beyond 25dB, the estimators are close to the CRLB. 

However, for high SINR values, the so called off-grid effects 

become evident. They are bias errors in the DOA estimation 

that arise when the nominal target spatial frequency ν  does 

not belong to the set ϒ for the FB and to Ω for the CSBs. Of 

course, the residual bias depends on the “thinness” of the 

grid and it is upper bounded by 1/2G. This value is achieved 

when ν  falls exactly between two grid-points.  
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Fig. 1. RMSE on DOA estimation 

4.2 ROC evaluation 
 

The Receiver Operating Characteristic (ROC) curves 

show the Probability of Detection (PD) as a function of the 

Probability of False Alarm (PFA). In Fig. 2 the comparison 

among the ROC curves of the FB and of the three CSBs in 

the spatially-correlated clutter scenario (eq. (9.b)) is pre-

sented. The random signal model is used in which ρ is as-

sumed to be a zero-mean complex Gaussian random varia-

ble with σρ
2
=SINR·(σn

2
+σc

2
).  

Here, SINR=-10dB, 0dB, and 10dB, and G=180. In this 

case, all the three CSBs outperform the classical FB. In fact, 

for each PFA, the PD provided by each CSB is always high-

er than the one provided by the FB. In particular, the SPICE 

and the L1 algorithms have the best detection performance, 

especially at low SINR values. 
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Fig. 2. ROC curves case for three different SINRs. 

4.3 The super-resolution property 
 

The FB suffers from the Rayleigh resolution limit, which 

is independent of the SNR. In particular, for an ULA of N 

array elements, the Rayleigh resolution limit, i.e. the 



beamwidth in the spatial frequency space, defined as the full 

width of the mainlobe at the half-power level, is 

∆ν=0.886/N. In some recent publications ([5],[12]), it is 

shown that the CSBs are able to achieve the super-resolution 

even in the single-snapshot case. In [12], the super-

resolution limit for a CSBs is derived as ν∆ =exp(-CdN/K) 

where Cd is a given constant. Then, while the Rayleigh 

resolution limit decreases as N
-1

, the CS super-resolution 

limit decreases as exp(-αN). The aim of this section is to 

compare the super-resolution capability of the L1, SL0 and 

SPICE algorithms with the FB. A white noise scenario (eq. 

(9.a)) and a random signal model are assumed. The analysis 

is performed by evaluating the probability of resolution, 

Pres. In [12] and [13], the following random inequality is 

used to define a super-resolution event: 
 

 ( ) [ ]1 2 1 2

1
, ( ) ( ) ( ) 0,

2
CS CS CS m

p p pγ ν ν ν ν ν+ − >�  (11) 

 

where νm=(ν1+ν2)/2 and pCS is the generic CS spectrum-like 

function. Two equipowered sources located at spatial fre-

quencies ν1 and ν2 are said to be resolvable if the inequality 

in eq. (11) holds true and to be irresolvable otherwise. This 

problem can then be seen as a binary decision problem, 

where γ is the decision statistic. The probability of resolu-

tion can then be defined as Pres=Pr{γ>0}. In Fig. 3, Pres is 

evaluated as a function of the source separation in the spatial 

frequency domain for SNR=10dB and G=2
9
. The frequency 

separation, denoted as ∆=2l/G for l=1,2,…,L<G is defined 

with respect to νm=0.3 so that the spatial frequencies of the 

two sources are given by ν1= νm-∆/2 and ν2= νm+∆/2. From 

Fig. 3, it is clear that the Pres of the CSBs is always higher 

than that of the FB. We observe also that the Pres of SPICE 

is close to 1 also for ∆ below the Rayleigh limit, which is 

plotted in red. Clearly, by decreasing ∆, Pres also decreases. 

The SPICE algorithm is the one that provides the best Pres. 
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Fig. 3. Pres as function of source spatial frequency separation. 

 

5. REAL DATA ANALYSIS 
 

Data collected during the Co-Operative littoraL Asw Be-

haviour (COLLAB) 2013 experiment are used to test CSB 

algorithms on real acoustic array measurements. The exper-

iment has been conducted by CMRE in La Spezia waters, 

Italy, from 29 June to 7 July 2013. During the experiment, a 

bistatic system has been used with the transmitter, at fixed 

known position, that insonifies a surveillance region with a 

predefined pulse repetition interval (PRI) by transmitting a 

frequency modulated chirp signal. An underwater towed 

target (an echo repeater) was used to test detection and 

tracking performance by a 32 element hydrophone array 

towed by an Autonomous Underwater Vehicle (AUV). 

Received scan data are processed to compare CSBs against 

the FB. Preprocessing of the received data includes base 

band conversion, complex matching filtering and normaliza-

tion for the attenuation profile. 
 

 
Fig. 4. FB algorithm at scan time Ts=08:49:36Z. 

 

The complex normalized data have been beamformed us-

ing a spatial frequency grid of 180 points for each range cell 

of a scan. Fig. 4 shows the results of the FB at scan time 

Ts=08:49:36Z. The map scale represents normalized power 

in dB with respect to the direct blast maximum power. The 

target is visible at a bistatic range sum (BRS) of 3809 m and 

spatial frequency between 0.125 and 0.25. The direct blast 

from the transmitter is visible at a BRS of 3093 m and spa-

tial frequency -0.27. However, the results are affected by the 

so-called left-right ambiguity [14] of linear arrays, so the 

real target spatial frequency can be actually the opposite of 

the one observed in the map. The disambiguation is 

achieved by using the target and the AUV navigation data, 

the transmitter position and the array parameters to locate 

the target within the map. Fig. 5 shows the L1, the SL0 and 

the SPICE beamformers at scan time Ts with improved reso-

lution and side lobe levels with respect to the classical FB. 
 

6. CONCLUDING REMARKS 
 

In this paper, three CSBs, i.e. the L1 (or LASSO), the 

SL0 and the SPICE algorithms, have been analyzed and 

compared with the classical FB for target DOA estimation 

in a single-snapshot scenario. The DOA estimation accura-

cy, the detection performance, and the resolution capability 

of the three algorithms were analyzed and compared against 

the classical FB algorithm. Regarding the estimation per-

formance, the three CSBs and the FB present fairly similar 

performance. As far as the detection performance is con-

cerned, in the spatially correlated noise scenario the three 

CSBs outperform the classical FB. In particular, the SPICE 



and the L1 algorithms have the best detection performance, 

especially at low SNR values. Concerning the resolution 

capability, the simulations have shown that the SPICE algo-

rithm has the best super-resolution performance in terms of 

Pres. 
 

 
L1 
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SPICE 

Fig. 5. CSB at Ts=08:49:36Z.. 
 

 

The reduction of the secondary lobes by the CS-based 

algorithms, hence the reduction of the PFA, is clear by com-

paring the range-spatial frequency maps at the output of the 

beamformers when using real sonar data. From the same 

maps, the super-resolution capability of the CSBs has been 

verified, as well. Concerning the processing time, the SL0 

algorithm is one or even two order of magnitude faster than 

the SPICE and the L1 algorithm. Since, in many practical 

applications, a low processing time is a stringent require-

ment, the SL0 algorithm could represent a good tradeoff 

between the statistical optimality and the practical imple-

mentation. Future research efforts will explore the applica-

tion of the proposed CSBs to the multi-snapshot case. 

Moreover, a deeper comprehension of the statistical proper-

ties of the CSBs in different noise and clutter distributions 

(e.g. the widely known compound-Gaussian distributions) 

has to be developed. 
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