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ABSTRACT

Orthonormal Basis Function (OBF) models provide a stable
and well-conditioned representation of a linear system. When
used for the modeling of room acoustics, useful information
about the true dynamics of the system can be introduced by
a proper selection of a set of poles, which however appear
non-linearly in the model. A novel method for selecting the
poles is proposed, which bypass the non-linear problem by
exploiting the concept of sparsity and by using convex opti-
mization. The model obtained has a longer impulse response
compared to the all-zero model with the same number of pa-
rameters, without introducing substantial error in the early re-
sponse. The method also allows to increase the resolution in
a specified frequency region, while still being able to approx-
imate the spectral envelope in other regions.

Index Terms— Parametric models, Orthonormal Basis
Functions, Kautz filter, Room acoustics, LASSO

1. INTRODUCTION

Parametric modeling of room acoustics refers to the approxi-
mation of a room impulse response (RIR) by means of digital
filters. Since a room is considered to be a stable, causal, linear
system, it can be modeled using finite impulse response (FIR)
and infinite impulse response (IIR) filters. The modeling of
the RIR is of interest for all those applications that require the
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knowledge of the acoustic coupling between a source and a
receiver at one or multiple locations in the room. Examples
are room equalization, acoustic feedback and echo cancella-
tion, and dereverberation.

According to room acoustics theory, a RIR (correspond-
ing to the Green’s function of the acoustic wave equation) has
infinite length. However, since its envelope shows an expo-
nential decay, a RIR may be approximated by truncation to
a finite number of samples. The all-zero model can achieve
an arbitrary degree of accuracy by using a high-order FIR fil-
ter, where the order corresponds to the sample index at which
the response is truncated. The main drawback is that slowly
decaying RIRs often require an FIR filter of very high-order.
Moreover, the RIR approximation is strongly dependent on
the position of both the source and the receiver within the
room. An alternative is to use a model with an infinitely long
impulse response in order to approximate a long RIR by using
a smaller number of parameters. A stable all-pole model can
only describe the minimum-phase characteristic of the acous-
tic system and cannot model true delays. This is not the case
for the pole-zero model, which starts from the assumption
that the poles of the modeled room transfer function (RTF)
correspond to the resonance frequencies and damping factors
of the system, while zeros correspond to anti-resonances and
time delays. A particular pole-zero model called common-
acoustical-poles and zeros (CAPZ) model [1] relies on the as-
sumption that the resonances are a characteristic of the room
only and that all RTFs of the room can be parameterized by
a common set of poles, while differences between the re-
sponses for different source and receiver positions within the
room are represented by the zeros. Unfortunately, since pole-
zero models are non-linear in the parameters, no closed-form
solution to the corresponding parameter estimation problem
exists, thus requiring non-linear optimization. Consequently,
problems of instability or convergence to local minima may
occur, especially for high model orders.

In recent years, there has been a renewed interest in mod-
els based on Orthonormal Basis Functions (OBFs), which
have desirable properties in terms of complexity, stability, and
well-conditioning. These models describe a particular fixed-



poles IIR filter with a tap-transversal structure and frequency-
dependent delays, where the tap-coefficients appear linearly
and can be estimated by linear regression. However, the poles
appear non-linearly in the model and their estimation again
requires non-linear optimization. Although the OBF models
are well-established in the general theory of system identifi-
cation [2], there are only a few examples of their use for the
modeling of acoustic systems. Single-pole OBF models have
been used for approximating the acoustic echo path in echo
cancellation systems [3,4], while a more general OBF struc-
ture has been used in [5] for loudspeaker response equaliza-
tion and modeling of room and musical instrument responses.

In this paper, the goal is to develop a method for the opti-
mal pole selection in the OBF model to increase the modeling
accuracy in comparison to the all-zero model with the same
number of parameters. The paper is structured as follows.
Sec. 2 outlines the fundamental theory of OBF models. Sec. 3
introduces a new method for selecting the poles which ex-
ploits the concept of sparsity and uses a convex optimization
algorithm. In Sec. 4, simulation results are presented, com-
paring the proposed method to the pole estimation method
used in [5] and to the all-zero model. Finally, the conclusions
are drawn in Sec. 5.

2. ORTHONORMAL BASIS FUNCTION MODELS

The main idea of OBF models [2] is to incorporate in the ba-
sis functions some a priori knowledge about resonances and
time constants of the system under study. Suppose a pole in
the true dynamics of the system lies around &; inside the unit
circle, then we can embed this information in the basis by
using a function like
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where ¢ is the forward shift operator, d = {0, 1} determines
simple or strict causality and A; = /1 — [£;]? is a normal-
ization factor. Then a second basis function Wy (q, [¢1, &]7T)
is introduced to include a second pole &,
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where Ay = /1 — |&2 and the zero in ¢ = 1/£; ensures

orthogonality between the two functions W1 and Wy (with &;
the complex conjugate of &1). An arbitrary number of poles
can be included in the model structure by repeating the rea-
soning above for the set of poles & = [¢1, &2, ..., &7, thus
providing a general construction for OBF models, where the
n-th basis function is defined as
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The RHS of this equation, known as the Takenaka-Malmquist
function, contains a sequence of first-order all-pass filters de-
termined by the previous poles (&, k = 1,...,n — 1) in the
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Fig. 1: The mixed Kautz model structure, with parameters b; =
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structure, plus a normalization factor. If the poles are identical
and real, the structure so obtained is called Laguerre model,
which in turn is a generalization of the FIR structure, orthog-
onalized and with frequency-dependent delays. The Laguerre
model is well-suited for describing the damping behavior of
the system. Although the responses to the functions in (1)
are complex-valued if the poles in the pole set £ are complex,
a pair of real-valued responses for each complex pole can be
obtained from the linear combination of two subsequent func-
tions defined by the pole and its complex conjugate. More
than one realization of the unifying structure described in [6]
is possible for a proper choice of some orthogonalization pa-
rameters, one being the well-known Kautz model [7]. If the
poles are identical and complex, the model is called two-
parameter Kautz, which is typically used when the system
exhibits a dominating resonance.

In order to describe the large number of resonances and
time constants characterizing the acoustic behavior of a room,
a mixed Kautz structure similar to the one used in [5] will
be adopted, admitting both complex and real poles, located
at any position inside the unit circle to assure stability. This
structure is shown in Fig. 1 for n real poles and m pairs of
complex conjugate poles.

One important property of OBF models is that these are
linear in the tap-coefficients, thus allowing the use of linear
regression estimation. The model output for a given input
u(t) is described by

M
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where @ = [01, ..., 0] is the vector of tap-coefficients to be
estimated, and U;(q, &) are M rational OBFs. In vector form

this becomes
y(t,€,0) = p(t,£)70

where the i-th element ; (¢, &) of the vector ¢(t, ) is given
by the input signal u(¢) filtered by the basis function ¥;(q, £).
The least-squares estimate for the tap-coefficients 8 can then
be obtained in closed form as the solution of the minimization
problem
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where N is the size of the data set {u(¢),
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The basis functions ¥;(e/*) form a complete set in
the Hardy space on the unit circle Ho(T), provided that
S oreo(l — |&]) = oo [6]; this means that any quadratic
summable function can be approximated with arbitrary accu-
racy by a linear combination of a certain finite number of the
basis functions. Furthermore, although the phase response
of each tap-output ;(t, €) depends on the ordering of the
all-pass filters sequence (cf. Fig. 1), the orthogonality of the
basis functions ensures that the same magnitude and phase
responses for the output are obtained for any ordering of the
pole set & [S]. Thus, any number of poles can be selected at
any position inside the unit circle.

3. SPARSE MODELING OF RIRS

The motivation for using an OBF model for approximating a
target RIR is to achieve the same modeling accuracy as the all-
zero model with a reduced number of parameters. For a given
number of basis functions, the problem is then to optimally
select the poles to parameterize the basis functions so that
the accuracy of the model is maximized. This is a non-linear
problem that might be addressed using non-linear numerical
optimization, but in this case the algorithm is likely to stall in
a locally optimal solution.

Here we propose a method that bypasses the non-linear
problem by selecting the poles from a large number of poles
distributed inside the unit circle. In order to achieve a trade-
off between accuracy and complexity we make use of the con-
cept of sparse approximation, which refers to the penalization
of non-zero entries in the tap-coefficient vector 6, such that
the optimal solution will contain a large number of zero tap-
coefficients. A common way to obtain a sparse approximation
of the system is to add a regularization factor to the LS crite-
rion in (2) in order to minimize the approximation error and
the number of non-zero tap-coefficients at the same time.

The so-called LASSO (Least Absolute Shrinkage and Se-
lection Operator) [8] is a regularized linear regression opera-
tor where the regularization factor A determines the trade-off
between the accuracy of the estimation, by minimizing the
LS error, and the sparsity of the solution vector, i.e. its ¢;-
norm (which is the convex relaxation of the £y-norm). Larger
values of A de-emphasize the role of the LS error over the
{1-norm penalty, thus yielding fewer non-zero coefficients,
which means a sparser solution. The objective function of
the LASSO problem is the sum of a strictly convex function
(the LS error) and a (non-strictly) convex function (the ¢;-
norm). Although no closed-form solution to the minimization
problem exists in general, a globally optimal solution can be
obtained efficiently by using convex optimization algorithms.

Our method for pole selection consists in performing the
sparse approximation using an overcomplete set of basis func-
tions, obtained as a union of OBF bases with different orders
and pole values. The idea is to select the ‘most significant’
poles out of a grid defined over the unit disk. The poles
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Fig. 2: Pole grids with uniform (left) and logarithmic (right) radius
and angle distributions.

in the grid may be placed arbitrarily or following a particu-
lar distribution: for instance, the angle (resp. radius) of the
poles might be distributed over the range [0,7] (resp. [0,1))
uniformly or logarithmically. Two illustrative examples are
shown in Fig. 2. For a pole p = pe~7Y, the angle ¥ defines
the frequency of the resonance, while the radius p determines
the bandwidth (or the Q-factor) of the response around that
frequency, where a pole close to the unit circle corresponds to
a sharp resonance.

An orthonormal basis of d functions is then built for each
pole of the grid by using the two-parameter Kautz model.
From P poles in the grid, P bases of d functions each are
produced, which are then all put together to create the vector

(. &) = [V (t, &), ..., Pt )T ()

The j-th basis corresponding to the pole &; is given by the
set of d functions \IJE]), with ¢ = 1,...,d, which is used to
compute the set of responses to the input signal u(t),

oD (t,&) = [0 (1, &), -, P (8, &))"
= 09D (q,&)ut), ..., ¥9 (g, &)u@®)].

Given the completeness of the set of OBFs, a target RIR
response can generally be approximated by the linear combi-
nation of a small number of basis functions. The goal is then
to find the poles from which these basis functions are built or
equivalently to find a coefficient vector with energy concen-
trated in few coefficients. For this purpose, the vector @(t, )
in (3), typically of length Pd > N with N the size of the data
set, is used to formulate a LASSO problem, thus obtaining an
underdetermined system of linear equations

N
6y = argmin {i S () - #(1,€)70)" + A||0||1} ,
t=1
“)
having a solution vector of size Pd with only a small number
of significantly non-zero coefficients. In practice, many coef-
ficients are not exactly zero (due to the stopping criteria of the
convex optimization algorithm) and an additional threshold-
ing operation is needed. The number of non-zero coefficients

in @y depends on the regularization factor ), but no direct



relation exists. A measure p = [0, 1] has been used to de-
fine the degree of sparsity, ranging from a non-sparse to an
all-zero solution. The latter case (1 = 1) is obtained when A
equals the maximum correlation between the basis functions
and the data set [9]. Thus, the number of non-zero coefficients
for a given p depends on the data set {u(t), y(t)}}¥,,

A=p (%)

> 18, €)y(t)]

o0

The hypothesis made here is that the poles related to the

non-zero coefficients of 0y represent the best choice for the
pole set é of an OBF model for a given degree of sparsity.
Note that the true OBFs corresponding to the pole set é are
not used directly in the LASSO, which in fact uses a structure
that is not orthogonal (it can be seen as a parallel structure
of P two-parameter Kautz filters of order d). Therefore, in a
second step, we use the poles in é to build the mixed Kautz
structure depicted in Fig. 1 and then we compute the LS esti-
mate for the linear coefficients as in (2).

An asset of the proposed method is the possibility of lim-
iting the search range of the grid in the selection of the poles,
both in the angle and in the radius, in order to increase the
resolution in certain frequency regions. In the OBF model,
poles can be selected arbitrarily inside the unit circle, differ-
ently from other pole-zero models for which the poles are usu-
ally taken close to the unit circle and distributed evenly in the
whole frequency range to avoid ill-conditioning. For instance,
in order to approximate a target RIR with a higher accuracy
at low frequencies, we use a pole grid covering only the por-
tion of the unit disk up to a certain angle ¥,,,. Interestingly,
this does not imply a sudden drop in the output frequency re-
sponse because the lack of poles above ¥,,, is compensated by
poles having a smaller radius, i.e. low-Q resonances.

4. SIMULATION RESULTS

The proposed method has been tested on B = 9 data sets
in which the input signal u(t) corresponds to a unit impulse
function and the output signal h..(t) is one of the R measured
target RIRs taken from the MARDY database [10], truncated
to N = 2000 samples and with no delay (f; = 48 kHz). Dif-
ferent distributions of the poles in the grid have been used,
covering the entire unit disk or only a portion. The number
of poles in the grid was fixed to P = 1500 and for each pole
a basis of d = 10 functions was computed, so that the num-
ber of coefficients in the LASSO problem in (4) was Pd =
15000. A fast implementation (YALL1 [11]) of the Alternat-
ing Direction Method of Multipliers (ADMM) algorithm [12]
has been used, the code of which is available at [13].

An approximation using the proposed method has been
computed for each target RIR h,.(t) with different degrees
of sparsity, where the regularization factor A in (5) is deter-
mined by p = {0.00125, 0.0025, 0.005, 0.01, 0.02, 0.03,
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Fig. 3: (left) The average NMSE in (6) for the entire response (top)
and for the early (middle) and late response (bottom). (right) The
average NMSE in (7) for the entire spectrum (top) and for the fre-
quency regions [0, £] (middle) and [, 7] (bottom). For the all-zero
model (—#—) and for the OBF model, calculated with the proposed
method (—6—) and the BU method (—&—).

0.04, 0.05}. Then, an all-zero model was computed with
the same number ng of tap-coefficients as the resulting OBF
model. The warped BU method [14] suggested in [5] for se-
lecting the poles has been used for comparison; this is an it-
erative FIR-to-IIR filter conversion by LS approximation that
provides a set of stable poles usually close to the unit circle.
The results obtained with the all-zero model and with
the OBF model were evaluated by means of the normalized
mean-square error both in time and frequency domain, aver-
aged over all R RIRs. The error measure between the target
response vector h,. and the estimated response h, is given by
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The error has been computed on the complete impulse re-
sponse and by splitting it in an initial response of length ng
samples and in a late response of length N — ny. Results are
shown in the left column of Fig. 3 for a logarithmic pole grid
with angles limited to [0, £] and for the warped BU method
with Bark-warping factor w = 0.766. It can be seen in the
middle plot that our method gives a smaller error than the BU
method in the first part of the response (where the all-zero
model has no error), especially for high degree of sparsity
(small ng), while the reduction of the error for the BU method
in the late response (bottom figure) is less substantial.

In a similar fashion, the power spectrum error is given by
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which has been computed on the whole spectrum and in the
frequency regions [0, £] and [, 7]. Results are shown in the
right column of Fig. 3, where it can be noticed that the BU
method performs better in the low-frequency region (middle
figure), but it shows a larger error in the high frequencies
(bottom figure). In fact, since the BU method selects poles
very close to the unit circle, it approximates low-frequency
resonances with good accuracy, but it is not able to approxi-
mate the spectral envelope in the high-frequency region. Our
method, instead, selects also poles with smaller radius, which
corresponds to resonances with a lower Q-factor, thus allow-
ing a better approximation in the overall spectrum compared
to the all-zero model, but with a lower frequency resolution
at low frequencies than the BU method. This is depicted in
Fig. 4, where the frequency magnitude response of the target
and the estimated responses are shown, together with the pole
sets selected by the two methods considered.

5. CONCLUSION

A new method for selecting the poles for an OBF model struc-
ture for approximating a target RIR has been presented. The
method avoids a non-linear estimation problem by exploiting
the concept of sparsity in the LASSO problem and by using
a well-known convex optimization algorithm (ADMM). The
method provides a longer estimated response than the all-zero
model, whilst introducing only a small error in the early re-
sponse. The proposed method is better suited in approximat-
ing early reflections and the overall magnitude spectrum, at
the expense of a reduced accuracy in the low-frequency ap-
proximation if compared to the method in [5]. It also provides
more flexibility in the placement of the poles, so that different
configurations for the pole grid may be used, possibly based
on some prior knowledge of the system under study.
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