FILTER DESIGN WITH HARD SPECTRAL CONSTRAINTS
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ABSTRACT

Filter design is a fundamental problem in signal processing
and important in many applications. In this paper we consider
a communication application with spectral constraints, using
filter designs that can be solved globally via convex optimiza-
tion. Tradeoffs are discussed in order to determine which de-
sign is the most appropriate, and for these applications, finite
impulse response filters appear to be more suitable than infi-
nite impulse response filters since they allow for more flexible
objective functions, shorter transients, and faster filter imple-
mentations.

Index Terms— OFDM, filter design, convex optimiza-
tion.

1. INTRODUCTION

Filter design is a fundamental problem that is omnipresent
in applications such as communications and radar. The fre-
quency spectrum is becoming excessively congested [1], and
the use of filter design is a systematic method for creating
signals with constrained spectra to minimize interference [2].
Here we will consider a case of filter design using convex
optimization for a power line communication (PLC) applica-
tion [3,4].

We consider orthogonal frequency-division multiplexing
(OFDM) [5], where the symbol (z1, 23, ..., 2k) is encoded
into the OFDM-symbol

K
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s(t):TE zpe?rt fort=0,1,...,7 -1, (1)
k=1

using a set of carrier frequencies (wy1,ws,...,wk). Here T
is the length of the OFDM-symbol, and for practical reasons
we assume that |z < 1, for k = 1,..., K. Regulations
put constraints on the transmit power in specific frequency
bands and the carriers are therefore selected in the frequency
bands where transmission is allowed (see Figure 1). Despite
such a carrier selection, the spectral valleys in the resulting
spectrum, between the sets of carriers, are often not deep
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Fig. 1. Carrier placement and spectral constraints.

enough to satisfy the constraints. To deal with this, the signal
is passed through a filter H (w) before transmission.

Denote the energy spectral density of s(¢) by ®(w) and
the output constraints by Woy¢put(w). The spectral energy
over all possible symbols (z1,z2,...,Zk) is bounded by
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which is depicted in the left plot of Figure 2, and it can be seen
that the valleys are not deep enough.! In order to guarantee
that the filtered output satisfies the spectral constraints, the
filter magnitude needs to be bounded by

|H(w)]* < Vhitger(@) := Poutput (@) /Prnax (@), (2)

which is depicted in the right plot of Figure 2.

In addition to the constraints (2), the magnitude of the
frequency response in the frequency bands of the carriers 2 =
{w:|w—wy| <Aw/2,k=1,...,K}, where Aw = 27/T,
should be as large as possible to minimize the attenuation of
the OFDM-symbol.

UIn this example 7' = 60 and the distance between two adjacent carriers
is Aw =27 /T.
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Fig. 2. Left subplot: Maximum signal spectrum, and spectral
constraints. Right subplot: Filter upper bound Wgjte, (w).

——Filter bound

2 4
Frequency (rad)

2 4
Frequency (rad)

In this article we will describe how such a filter can be
constructed in a systematic way for spectral shaping of an
OFDM signal.> We will consider designs for finite impulse
response (FIR) filters as well as infinite impulse response
(ITR) filters and examine the relevant trade-offs for the cur-
rent application. Our goal is to highlight possible pitfalls and
to determine which methods are appropriate for PLC.

2. FIR FILTER DESIGN

First consider using an FIR filter of order N, i.e., a filter H
with frequency response function

H(w) = by + b1e?% 4 - + byed N (3)

where b, € C,k = 0,1,..., N. The design of the filter may
be formulated as the max/min problem

Wy @
v < |H(w)|?, forw € Q,
subject to |H((,u)|2 < Ugiper(w), forw € [0, 27]
H e P(N)

where P(N) denotes the set of FIR transfer functions of the
form (3). The magnitude |H (w)|? is nonlinear in the filter co-
efficients by, making the maximization of v non-trivial. To
overcome this problem, we use the lead of [8—11], and repa-
rameterize the filter design as a convex optimization problem.
Note that

N
Hw)> = Y pre’™ = p(w) (5)
=—N
where
N—k B
pr= ) beiibe (6)
£=0

2In this paper we do not consider certain practical aspects, such as cyclic
prefix and trade-offs between guard intervals, standard windowed OFDM,
and filters (c.f., [6,7]).
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Fig. 3. Left subplot: v as function of filter degree. Right sub-
plot: The impulse response (minimum phase) corresponding
to the optimal max/min filter of degree 26.

and where b denotes the complex conjugate of b. Con-
versely, if the trigonometric polynomial p(w) of degree N
is non-negative on [0, 27] then there exists H(w) such that
(6) holds and the coefficients bg, b1, ..., by can be recovered
from p(w) by spectral factorization. This allows for a linear
parametrization of |H (w)|? = p(w) via po, p1,...,pN Sub-
ject to the convex constraints p(w) > 0, w € [0,27]. Hence
(4) may be formulated as a convex optimization problem

max 0% (7N
Py
~v < p(w), forw € Q,
subject to 0 < p(w) < Pgper(w), forw € [0, 2],
pe Ptrig(N)7

where Py, (V) denotes the set of real trigonometrical poly-
nomials® (5).

We continue the example associated with Figures 1 and
2, where T' = 60 and the distance between two adjacent car-
riers is Aw = 27/T. The objective value, corresponding to
~v = min{|H (w)| : w € 2} is depicted in Figure 3 as a func-
tion of the filter length. In this example the objective value
essentially reaches its maximum for N = 26. The second
subplot in Figure 3 shows the impulse response of the opti-
mal filter with length 26. Figure 4 depicts the magnitude of
the FIR filter (left plot) and the resulting bound on the spec-
trum of the transmitted signal, i.e., |H (w)[?®pax(w) (right
plot). Figure 5 shows s(t) and its spectrum ®(w) for a ran-
dom binary sequence x, whereas Figure 6 corresponds to the
filtered signal.

A few remarks are in order. Firstly, the use of an FIR
filter increases the duration of the signal from 7" to T' + N,
and hence a high filter length may cause inter-symbol inter-
ference. Secondly, the bound used in (7) is uniform on (2,
hence the objective value saturates as the filter magnitude
reaches the bound in one area and does not seek to improve
in the other areas. This is a problem when the passbands and

3That is, with p_j, = py, fork = 0,1, ..., N.



—— Spectral constraints|
5 Filt-spec bound

2 4
Frequency (rad)

2 4
Frequency (rad)

Fig. 4. Magnitude of the optimal max/min FIR filter of length
26 and the corresponding output spectral bound.
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Fig. 5. Unfiltered signal (real part) and its spectrum.
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Fig. 6. Filtered signal (real part) and its spectrum using the
optimal max/min FIR filter of length 26.

notches have varying depths and widths, in which case all the
passbands suffer when one constraint is difficult to achieve.
In this case ¥(w) is smaller for the third set of carriers (in
the interval [1.37,1.87]) than for the first two sets, which
means that the optimization problem does not increase the
lower value of |H (w)| for the first two sets of carriers even
though there is room for that. This suggests that the objective
function in the max/min problem is not the best choice for
these cases.

One alternative to the max/min objective function is to
use a least-squares (LS) objective. This choice also leads to
a convex optimization problem for FIR models and may be
posed as follows:

min /(\Ilﬁlter(w) — p(w))?dw 8)
P,y Q
subject to 0 < p(w) < Vgiter(w), forw € [0, 27],

pE Ptrig(N)-

This cost function does not run the risk of being saturated by
one or few frequency points. Instead it decreases as the filter
magnitude increases in the passbands. The design result for
the optimal LS FIR filter of length 26 is shown in Figure 7.
The filter frequency response tightly follows the bound in the
bands where the carriers are. The corresponding impulse re-
sponse is depicted in Figure 8, and the filtered signal is shown
in Figure 9.

3. IIR FILTER DESIGN

Another filter design option is to use an IIR filter, which has
a transfer function of the form

bo + b1e?® + - 4 byelwN
ap + arel® + -+ apedM’

H(w) =

By using the idea in (5), once again, and letting
N—k M—k
Pr= D beskbe, qr= Y arrds,
£=0 £=0

the numerator and the denominator of |H (w)|? may be pa-
rameterized linearly as follows:

N )

o Zk:—Npkejkw _ pw)

= == =
Zk:—M qreike

q(w)
where p(w) > 0,¢(w) > 0 for w € [0,27]. The max/min
problem (4) for IIR filters may now be posed as

H (w)/?

max 7y
p,q,Y
subjectto  yg(w) < p(w), forw € Q,

0 < p(w) < ¥(w)gq(w), forw € [0,27],
S Ptrig(N)v qc ,Ptrig(M)'
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Fig. 7. Magnitude of the LS-optimal FIR filter of length 26
and the output spectral bound.
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Fig. 8. Impulse response (minimum phase) of the LS-optimal
FIR filter of length 26.

This is a non-convex problem, but its feasibility sub-problem
is convex for a fixed . Hence the problem is quasi-convex
and can be solved globally, e.g., by using the bisection algo-
rithm on 7.

The objective value, corresponding to v = min{|H (w)] :
w € Q} as a function of the filter length (with N = M) is de-
picted in Figure 10. The optimal IIR filter of length (8, 8) and
the resulting spectral bound of its output are shown in Figure
11. The corresponding filtered realization and its spectrum
are depicted in Figure 12.
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Fig. 9. Filtered signal (real part) and its spectrum using the
LS-optimal FIR filter of length 26 (minimum phase).
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Fig. 10. Left subplot: ~ as a function of the IIR filter length
(with N = M). Right subplot: Impulse response (minimum
phase) of the optimal max/min IIR filter with N = M = 8.

Clearly, IIR filters are more general than FIR filters and
require a lower degree to satisfy a set of constraints. There are
however some difficulties that make IIR filters less suitable
for this particular application. The objective functions which
give rise to convex optimization problems are more restric-
tive for IIR filters compared to FIR filters. For example, the
least squares objective function in (8) for IIR filters gives rise
to a non-convex optimization problem. Secondly, the tran-
sients of IIR filters are infinitely long, at least in principle,
potentially causing more inter-symbol interference problems.
Thirdly, even if an IIR filter of significantly lower degree may
be found, there is little or no computational gain since an FIR
filter may be implemented using the fast Fourier transform
(FFT), which in general is more computationally efficient.

4. IMPLEMENTATION AND SPECTRAL
FACTORIZATION

The convex optimization problems in this paper were solved
using CVX, a Matlab package for specifying and solving con-
vex programs [12]. The constraints were enforced on a fine
grid (5000 grid points). A rule of thumb is that the grid should
contain at least 15 times as many points as the order of the fil-
ter [13]. In practice this works well for the bounds v < p(w)
and p(w) < ¥(w), but for the positivity constraint 0 < p(w)
this is not enough. The reason is that if p(w) has negative
values for some w, then there does not exist any filter such
that | H (w)|? = p(w). Fortunately the positivity constraint on
p(w) may be formulated as an linear matrix inequality (LMI)
using the so-called trace parameterization (see [9—11]). The
trigonometric polynomial

N
plw) = Y pret
k=—N
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Fig. 11. Left subplot: Magnitude of the optimal max/min IIR
filter with N = M = 8. Right subplot: The corresponding
output spectral bound.
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Fig. 12. Filtered signal (real part) and its spectrum using the
max/min optimal IIR filter with N = M = 8 (min. phase).

is non-negative for w € [0, 27] if and only if there exists a
positive semidefinite matrix X € C(N+D>x(N+1) guch that

pr = trace(Ef X), fork=-N,...,N

el )

where E, is the kth shift matrix. Thatis, £}, € RV x(N+1)
with [Ey¢m = 1if ¢ —m = k and [E}]e¢,m = 0 otherwise.

This fact allows us to state the positivity constraint as an
LMI, which ensures that p(w) is non-negative for the entire
interval and not just for isolated grid points. Then we can
use Wilson’s algorithm [14] for spectral factorization of p(w)
(and ¢(w)) to determine the filter H (w).

5. CONCLUSIONS

We have discussed designs of FIR and IIR filters for sig-
nals with constrained spectra such as those appearing in some
communication applications. The designs were formulated
as convex or quasiconvex optimization problems and globally
optimal solutions were found in each case. For the applica-
tions of interest in this paper, FIR filters appear to be more
suitable than IIR filters. Indeed FIR filters allow for more
flexible objective functions, shorter transients, and faster fil-
ter implementations.
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