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ABSTRACT 

 

This work presents modified sphere decoding (MSD) algo-

rithms for optimal solution of some sparse signal modeling 

problems. These problems include multi-pulse excitation 

signal calculations for multi-pulse excitation (MPE), algebra-

ic code excited linear predictive (ACELP) and -pulse maxi-

mum likelihood quantization (MP-MLQ) speech coders. 

With the proposed MSD algorithms, the optimal solution of 

these problems can be obtained at substantially lower compu-

tational cost compared with full search algorithm. The MSD 

algorithms are compared with a series of suboptimal ap-

proaches in sparse approximation of correlated Gaussian 

signals and low delay speech coding tasks.  

 

Index Terms—sphere decoder, lattice, sparse approximation, 

speech coding, CELP, MP-MLQ, ACELP. 

 

1. INTRODUCTION 

 

Sparse approximation techniques are widely used in speech 

and audio coding [1-4], MIMO communications [5, 6], array 

signal processing [7], radar, etc. In this paper the following 

sparse approximation problem is considered: 
2| || |min xFy

x
      (1) 

where LNF  - codebook (dictionary, lattice-generating ma-

trix), Ny  - target vector, LL
MD x  belongs to a 

finite L-dimensional lattice with M elements per dimension; 

i.e. each component of x  may take one of the M values (the 

alphabet). An example of such an alphabet is the set of data 

transmission symbols in MIMO communication or the quan-

tized gain values in a multistage shape-gain vector quantizer. 

If the alphabet contains a zero value, then a sparse solution 

may be obtained. In some applications (MIMO communica-

tion) both vectors and matrix are complex, but in this work 

real numbers are used.  

Three cases are considered in this paper.  

Case 1. Closest point in the lattice. Vector x  may be dense 

or K-sparse. If LN  , the optimal solution of (1) may be 

found by using a sphere decoding (SD) algorithm [5, 8]. For 

LN   generalized SD algorithms may be used [9], at the 

cost of increasing the computational complexity. This model 

is mainly used in simulation of MIMO systems [5, 6]. 

Case 2. Uniformly scaled lattice (isotropic scaling). Problem 

(1) is generalized: now vector x  is multiplied by a scalar gain 

g . Thus x  and g  are searched, yielding minimum 

2| || | xFy g . The most important applications are in ACELP 

(algebraic CELP) and MP-MLQ (multi-pulse maximum like-

lihood quantization) speech coders [1]. In these coders vector 

x  is K-sparse and its components are {ix -1,0,1}. The 

sparse approximation of the target vector is the sum of the 

signed columns of F multiplied by g: 
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where 1)( ijx , and )(ij
f  is a column of a square matrix F. 

Column j
f  contains the response of the predictive synthesis 

filter to a single pulse of a unit amplitude positioned at j. In 

order to find indices )(ij , signs )(ijx  and gain g, suboptimal 

codebook search algorithms are used [1, 2, 4]. 

Case 3. Non-uniformly scaled lattice (anisotropic scaling). 

Vector x  is now replaced with ,xG  where 

},,,{ 21 Lgggdiag G  contains real gains. This is a typical 

speech model used in MPE (multi-pulse excitation) speech 

coders [10]. In these coders vector x  is K-sparse and its com-

ponents are {ix 0,1}. The sparse approximation of the tar-

get vector is a linear combination:  
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In MPE coders matrix F, containing filtered unit pulses, is 

square (which is assumed in this paper) but in CELP coders L 

may be greater than N. Indices )(ij  and gains )(ijg  are 

searched using suboptimal algorithms [3, 10-12]. A signal 

model (3) is also used to describe radar signals, sparse com-

munication channels [13], etc.  

The sparse approximation problems (1 to 3) are NP-hard. 

A full search algorithm, testing all possible solutions, is gen-

erally not feasible. However, the optimal tree searching algo-

rithms may reduce the computational load significantly. In 

Case 1 several variants of the sphere decoding (SD) algorithm 

are used [5]. In Cases 2 and 3 SD and related algorithms are 

used for calculation of the integer vector x  if gains (g or G) 



are known; thus, the gains calculation is decoupled from 

searching the closest point in the lattice, yielding suboptimal 

algorithms [6, 7, 13, 14].  

In this work the optimal tree search, based on a modified 

SD approach, is proposed for joint calculation of the lattice 

point and gain(s). The proposed algorithms are compared with 

suboptimal ones for two selected problems: sparse approxi-

mation of correlated Gaussian signals and low delay speech 

coding.  

 

2. MODIFIED AND SPARSE SD ALGORITHMS 

2.1. The standard sphere decoding algorithm 

Generally, Sphere Decoding (SD) algorithm is used for solv-

ing (1) and the alphabet L
MD  is usually a set of integer val-

ues. The matrix LNF  is assumed to be square, but extension 

to LN   is straightforward. Using QR-decomposition of the 

matrix F, (1) may be transformed to the following problem: 
2| || |min xRz

x
      (4) 

where yQz
1 , and R is an upper triangular matrix.  

The SD algorithm consists of N levels. In each level a 

new column of R is appended (from the right to the left side) 

and lattice points, generated by a corresponding component of 

x , are tested. At the k
th
 level it is the column )(kj

r  and the 

component )(kjx , where 1)(  kNkj . The partial solu-

tion of problem (4), reduced to k-1 dimensions, is not changed 

at the k
th 

level, and thus the partial difference vector  
)1()1()1()1(   kkkk

xRzε    (5) 

remains constant (see Fig.1).  

 

 

Fig.1. Evolution of the accumulated distance in SD algorithm 

At the k
th
 level the partial difference equals 
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where kN 1r  - a row of matrix R and 0 - a column of ze-

roes. The squared norm of the partial difference vector (i.e. 

the squared partial distance) increases: 

  2)1(2)(
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Thus, when looking for a lattice point within a sphere of a 

radius R centered at z , it makes no sense to pass to the k
th

 

level if 22)1( | || | Rk 
ε . The search must be continued at low-

er levels. That is why the SD algorithm yields far fewer 

arithmetical operations than the full search algorithm.  

2.2. The modified sphere decoding algorithm 

Now we introduce the modified SD (MSD) algorithm for 

searching for the optimal point in a uniformly scaled lattice 

(Case 2). At the
 
level k-1, the squared norm of the partial dif-

ference vector may be expressed as follows: 

)(| || || || | )1(2)1()1()1(2)1( gfg kkkkk   xRzε  (8) 

In the MSD algorithm the optimal gain is calculated: 
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At the kth level, the partial difference equals: 
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yielding 

  )()(| || | )1(2)(
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For )1(  k
optgg  the second term attains its minimum, but gen-

erally, gain used at k
th
 level, i.e. )(k

optgg   differs from )1( k
optg . 

Because (11) holds for any gain, the following inequality is 

true: )()()( 1)1()1()(   k
opt

kk
opt

kk
opt

k gfgfgf . Thus, the 

squared norm of the partial distance increases and the MSD 

algorithm is applicable for searching for the optimal scaling 

factor g and the optimal lattice point x  in the uniformly 

scaled lattice.  

2.3. The sparse sphere decoding algorithm 

In the above described algorithm, sparsity of x  is not de-

manded, but it may be attained if the alphabet contains a 

symbol equal to zero. Thus the optimal number of nonzero 

elements in x  is obtained by using SD and MSD algorithms. 

In order to obtain a K-sparse solution some constraints are 

added to the search procedure. The solution is updated and 

the radius R is reduced at the last (N
th
) level, if 22)( | || | RN ε  

and if sparsity (number of nonzero components of x ) equals 

K. Moreover, the k
th
 level is entered, if 22)1( | || | Rk 

ε  and if 

the sparsity of )1( k
x  does not exceed K. The second condi-

tion yields additional reduction of computational complexity, 

which has been noted in [13].  

Further reduction may be obtained by removing the null 

symbol from the alphabet and testing combinations of col-

umns of R in such a way that the best K-combination is not 

omitted. Complexity reduction of the proposed sparse SD 

algorithm is owed to reduction of the alphabet.  



 At the k
th
 level ( Kk ,,1 ) of the sparse SD algorithm 

the columns )1()2()1( ,,, jkjkj
rrr   are fixed and the col-

umn )(kj
r  is searched together with the corresponding sym-

bol )(kjx  and (in Case 2) the common gain g. If the partial 

distance Rk | || |ε , then the algorithm passes immediately 

to the next level (depth first approach). If Rk | || |ε  for any 

possible position j(k), symbol )(kjx  and gain g, then the al-

gorithm continues searching at the previous level.  

Combinations )()2()1( Kjjj    are generated in 

K nested loops. In the outer loop )1(j
r  is placed from 

Nj )1(  to Kj )1( . The possible positions of )2(j
r  range 

from 1)1()2(  jj  to 1)2(  Kj , etc. Testing occurs from 

the right to the left, as in standard SD algorithms.  

An SD algorithm may be used if the partial distance at 

level k is always greater than the partial distance at level k-1. 

First it will be shown for Case 1. At level k-1 the partial solu-

tion of problem (4), reduced to j(k-1) dimensions, yields the 

difference vector )1( k
ε  (5). At the next level this vector 

equals (Fig.2): 
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where 0 – null matrix.   

 

Fig.2. Evolution of the accumulated distance in sparse SD algorithm 

Similarly to (7), the squared partial distance equals 

2)1(
2
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Since 2)1(2)( | || || || |  kk
εε , the k

th
 level may be abandoned if 

22)1( | || | Rk 
ε . The same holds for Case 2 (the proof is al-

most identical to that presented in Section 2.2) and the sparse 

SD algorithm yielding the optimal solution of problem (2) 

will be called the sparse modified sphere decoding algorithm 

(SMSD).  

The proposed SMSD algorithm may be programmed in 

the form of a self-calling procedure, similarly to the standard 

SD algorithm [15]: SMSD(k) where k is a level. At the first 

call k=1 and R is an initial radius, obtained with some subop-

timal search procedure.  

For Case 2 and 1,,2,1  Kk  two nested loops are 

needed: 

Outer loop: kKkjkj  1,,1)1()(    ( 1)0(  Nj ) 

    Inner loop: for all nonzero symbols )(kjx  (e.g. 1 ) 

        )()()( kkk
xRv  ,  ( )(k

x  is a k-sparse vector) 

        
)()(

)()(
)(

ktk

ktk
k
optg

vv

vz
 ,     

2
)()()(2)( | || | kk

opt
kk g vzε   

         If  22)( | || | Rk ε    call SMSD(k+1) 

    End 

    If, for 0)( kjx , 22)( | || | Rk ε  break the outer loop 

End 
The last condition stems from the fact that the partial distance 

increases with increasing vector dimension.  

At the last level ( Kk  ) the N-dimensional problem is 

considered: 

Outer loop: 1,,1)1()(  KjKj  

    Inner loop: for all nonzero symbols )(Kjx  (e.g. 1 ) 

        xRv  ,  ( x  is an N-dim K-sparse vector) 

        
vv

vz

t

t

optg  ,     
2

2| || | vzε optg  

         If  22| || | Rε :   xx out , | || |εR , opt
out gg   

    End 

    If, for 0)( Kjx , 22)( | || | RK ε  break the outer loop 

End 

Note that, in general, )(K
ε  is not an N-dimensional vector, 

so 2)(2 | || || || | K
εε  . The SMSD algorithm returns the opti-

mal vector out
x  and the optimal gain outg  in Case 2. Exten-

sion to Case 1 is straightforward (gain g=1), and Case 3 is 

analyzed below.  

2.4. The sparse sphere decoding algorithm and non-

uniformly scaled lattice 

The sparse sphere decoding algorithm may be also applied to 

solve the “classic” sparse approximation problems (3). After a 

QR decomposition of F, problem (3) is transformed to 
2| || |min gRz

g
      (14) 

where Ng  is a K-sparse vector. 

First it must be proved that the partial distance increases 

at subsequent levels. At level k-1, the problem is reduced to 

1)1(  kjN  dimensions (Fig.2): vector )1( k
z  is ap-

proximated as a linear combination of k-1 columns of matrix 
)1( k

R : )1()1()1(   kkk
gRz , where )1( k

g  is a k-1-sparse 

vector. By extraction of these columns matrix )1(~ k
R  is ob-

tained, yielding )1()1()1( ~~   kkk
gRz , where )1(~ k

g  is k-1-



dimensional, dense vector of gains. The error of this approxi-

mation is a function of )1(~ k
g : 
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The optimal vector of gains equals: 
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At the next level the partial difference vector equals: 
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where 0 - a column of 1)1(  kjN  zeroes, )(~ k
R - ma-

trix of dimensions kkjkj  1)()1( . Therefore, for 

)1(
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For the optimal gains, i.e. 
gg
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and because the last k-1 components of 
)(~ k

optg  are not neces-

sarily equal to .~ )1( k
optg  This justifies use of the SD algorithm.  

The corresponding self-calling procedure (SMSD(k)) does 

not differ much from that described in Section 2.3. The main 

difference is a suppression of the inner loop, testing a set of 

symbols )(kjx . At each level, the optimal gain vector )(~ k
g is 

calculated, similarly to (16), and the squared partial distance 
2)( | || | k

ε  is evaluated. If 22)( | || | Rk ε , the level is increased, 

if not, the outer loop is broken. This does not concern the last 

level, in which N-dimensional system is tested. Here, if 
22| || | Rε , the radius R is updated, and the indices 

)(,),2(),1( Kjjj   and gains 
)(~ K

optg  are stored.   

 

3. COMPARATIVE EVALUATION 

 

In this section, the proposed SMSD algorithms are compared 

with full codebook search and with some suboptimal algo-

rithms. Two sparse signal models are used: they are described 

in equations (2) and (3). In accordance with the codebook F 

and the target vector y  two examples are analyzed.  

 Synthetic signals: y  is a vector of dimension N=20, 

obtained by passing a Gaussian noise through an AR filter 

221cos21

1)(
 


zz

zH


, where 98.0  and 16/  . 

The columns of F are obtained by passing single pulses 

through the same filter, i.e. they contain shifted impulse re-

sponse of H(z). This yields a coherent codebook, making 

search procedures difficult [16].  

 Speech signals processed in a nonstandard low-delay 

CELP coder. In this case y  is a perceptual signal vector (fil-

tered speech) of dimension N=16 (delay 2 ms at sampling 

frequency 8 kHz), and F is obtained as before, but H(z) is an 

adaptive predictive synthesis filter. The gain coefficient g is 

not quantized, in order to compare only the sparse approxima-

tion algorithms. At the end, however, the fully quantized 

coder is simulated, transmitting speech at 13.5 kbit/s.  

Suboptimal algorithms for solving the uniformly scaled 

lattice search problem (2) are compared in [4]. These algo-

rithms may deliver a starting point (the initial radius R) for 

SMSD algorithms. The following algorithms are considered. 

 Sparsity-forcing: calculation of a dense solution 

yFg
1 and choice of K components of greatest absolute 

values.  

 Minimum angle: a simple greedy algorithm, selecting K 

codebook vectors in K steps by minimizing the angle between 

the target vector y  a and its model gF  [17]. 

 Global replacement: the initial solution is found as 

above, then all vectors, one by one, are replaced by others, if 

such exchange yields reduction of error [2].  

 M-best implementation of minimum angle algorithm. 

The M-best algorithm calculates, in a parallel way, M se-

quences of codebook vectors (here, M=10). At the end the 

best sequence is retained [4]. 

 M-best + replacement: an M-best algorithm is executed, 

and then global replacement is performed. 

Suboptimal algorithms for solving the non-uniformly 

scaled lattice search problem (3) are compared in [3, 12]. 

Here the following algorithms are considered. 

 Sparsity-forcing: indices )(,),2(),1( Kjjj   are chosen 

as above, and then gains are calculated as in (16). 

 OOMP: (optimized orthogonal matching pursuit) [10-

12]. Here the fast implementation of this algorithm is used, 

namely the RMGS (recursive modified Gram-Schmidt) [12]. 

 M-best implementation of the OOMP algorithm. 

Results for problem (2) and synthetic signals show con-

siderable reduction of computational effort (Tab.1): SMSD 

visits less than 0.6% of nodes tested with full search ap-

proach, yielding the same optimal result. Further reduction 

may be obtained if gain is forced to be positive (SMSD g>0), 

but in some cases the optimal solution is skipped. The other 

suboptimal search algorithms yield much worse results. 

The SMSD algorithm is much more efficient than the full 

search approach in solving problem (3) (Tab.2). Similar con-

clusions stem from simulations of the LD-CELP coder with-

out gain quantization (in Fig.3 and Fig.4 mean SNR values 

for four phrases and more than 10000 segments are given). 

Using signal model (2) with K=10 and 4-bit predictive gain 

quantizer, we obtain a bit rate of 13.5 kbit/s. Comparing mean 

opinion score values for 10 speech phrases, we observe a sys-



tematic advantage of the SMSD algorithm over the other 

ones.  

 

Algorithm SNR  

[dB] 

nodes  

tested 

% of full  

search  

Full search 25.187  32.25 106 100 

MSD 25.187 588 103 1.82 

SMSD/sparsity-forcing 25.187 191 103 0.59 

SMSD/min.angle 25.187 189 103 0.59 

SMSD/M-best 25.187 181 103 0.56 

SMSD g>0 25.11 51 103 0.16 

M-best+replacement 20.31 3.3 103 0.01 

Global replacement 19.67 810 0.002 

M-best (M=10) 18.68 2.8 103 0.008 

Minimum angle 15.42 288 0.001 

Sparsity-forcing 10.01 1 0.00003 

Tab.1. Comparison of optimal and suboptimal algorithms in solving 

(2) for K=8, N=20 (mean values for 1000 runs). SMSD/min.angle 

means that the initial radius is obtained using minimum angle algo-

rithm, etc. (confidence interval for SNR values: 0.15 dB) 

 
Algorithm SNR  

[dB] 

nodes  

tested 

% of full  

search  

Full search 32.574  125970 100 

SMSD/OOMP 32.574 9523 7.6 

M-best 31.85 1240 1 

OOMP 29.94 124 0.1 

Sparsity-forcing 27.03 1 0.0008 

Tab.2. Comparison of several sparse approximation algorithms in 

solving (3) for K=8, N=20 (mean values for 1000 runs, confidence 

interval for SNR: 0.15 dB) 

 

Fig.3. SNR for LD-CELP coder with signal model (2) - confidence 

interval for all SNR values: 0.05 dB 

 

Fig.4. SNR for LD-CELP coder with signal model (3) - confidence 

interval for all SNR values: 0.05 dB  

 

4. CONCLUSIONS 

 

It is shown that the sphere decoding algorithm may be ex-

tended to uniformly or non-uniformly scaled lattices. The 

resulting modified SD and sparse modified SD algorithms 

yield the optimal solution of some sparse approximation 

problems at substantially reduced computational cost, com-

pared with the full search approach. The proposed algorithms 

are compared with suboptimal solutions.  
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