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ABSTRACT

Speech enhancement approaches are often enhanced by

speech presence probability (SPP) estimation. However, SPP

estimators suffer from random fluctuations of the a posteri-

ori signal-to-noise ratio (SNR). While there exist proposals

that overcome the random fluctuations by basing the SPP

framework on smoothed observations, these approaches do

not take into account the super-Gaussian nature of speech

signals. Thus, in this paper we define a framework that al-

lows for modeling the likelihoods of speech presence for

smoothed observations, while at the same time assuming

super-Gaussian speech coefficients. The proposed approach

is shown to outperform the reference approaches in terms of

the amount of noise leakage and the amount of musical noise.

1. INTRODUCTION

Many algorithms in speech signal processing require the in-

formation whether speech is present or not. Examples are the

estimation of the noise power or the estimation of the clean

speech coefficients. In this paper we address the estimation

of the a posteriori speech presence probability (SPP) in each

time-frequency bin of the short-time discrete Fourier trans-

form (STFT) domain when only a noisy observation is given.

It was shown that when SPP is taken into account, the perfor-

mance of single channel speech enhancement algorithms can

be improved [1]. To estimate the SPP, likelihood functions of

speech presence and speech absence are required which are

typically modeled as Gaussian distributions [1, 2].

The likelihood function of speech presence is parametrized

by the a priori signal-to-noise ratio (SNR) which is often

adapted to follow the local SNR in each time-frequency

bin [1, 2]. However, it has been shown that using the local

SNR leads to the conceptual disadvantage that the a posteri-

ori SPP yields only the a priori SPP in speech absence which,

by definition, is independent of the observation [3]. A typical

choice for the a priori SPP is P (H1) = 0.5. Instead of using

the local SNR, in [3] a fixed SNR is employed to parametrize
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the speech presence model which reflects the SNR that would

be expected if speech were present in a time-frequency bin.

As a result, the a posteriori SPP turns out to be close to zero

in speech absence without any modification or adaptation of

the a priori SPPs. Furthermore, in [3] it was proposed to base

the SPP estimates on a smoothed version of the a posteriori

SNR to reduce estimation outliers. For this, the likelihood

functions of speech presence and absence are modeled by

chi-squared distributions with the shape parameter ν. It turns

out that the more averaging is applied, the more ν increases.

In [4] it was argued that the speech discrete Fourier trans-

form (DFT) coefficients are not Gaussian distributed but

follow a more heavy-tailed, so-called super-Gaussian dis-

tribution. The resulting estimators turn out to preserve the

speech better than estimators employing a Gaussian speech

model. However, for SPP estimation, usually the assumption

of Gaussian speech priors is maintained, resulting in a mis-

match between the employed speech models for SPP estima-

tion and the estimation of clean speech coefficients. Speech

enhancement schemes under SPP for a consistently super-

Gaussian speech model were introduced in [5, 6]. However,

these models are only applied to non-smoothed observations

and may suffer from outliers in the estimation. Therefore,

the goal of this paper is to derive models for smoothed ob-

servations with an underlying super-Gaussian speech model

in order to avoid outliers while still having the benefit of a

super-Gaussian speech model.

The paper is structured as follows: Section 2 gives a short

overview of two state-of-the-art SPP research directions. Sec-

tion 3 introduces the proposed approach unifying the philoso-

phies from Section 2. The evaluation of the proposed estima-

tor is in Section 4. Finally, Section 5 concludes this paper.

2. REVIEW ON SPEECH PRESENCE PROBABILITY

(SPP) ESTIMATION

The short-time DFT coefficients of the noisy speech signal

Y (ℓ, k) are assumed to be an additive superposition of speech

S(ℓ, k) and noise N(ℓ, k). Here, ℓ is the time frame index and



k the frequency bin index. The aim of speech enhancement is

to obtain an estimate of the speech, denoted as Ŝ(ℓ, k), when

only the noisy speech Y (ℓ, k) is observed. In the remaining

of the paper, we will omit the indices ℓ and k for ease of read-

ability. Introducing the hypotheses for speech absence H0 and

speech presence H1 and employing minimum mean square

error (MMSE) estimation for estimating the speech amplitude

A = |S|, the MMSE short-time spectral amplitude (STSA)

estimator under speech presence uncertainty is given by [7]

Â = P (H1|Y ) · E{A|Y,H1} (1)

with E{·} being the expectation operator. With the noise

power σ2
N , the a posteriori SNR is defined as γ = |Y |2/σ2

N .

As the estimation is obtained in each time-frequency bin in-

dependently, it is reasonable to assume that the isolated in-

stantaneous phase in each time-frequency point does not give

information on whether speech is present or absent in the

time-frequency point under consideration. Thus, the poste-

rior SPP P (H1|Y ) can also be written as a function of γ, i. e.,

P (H1|Y ) = P (H1|γ) [8].

2.1. SPP for a Smoothed Observation

In [3], it is proposed to apply smoothing to the a posteriori

SNR to reduce random fluctuations in the a posteriori SPP.

The effect of smoothing is denoted by a bar, e. g., γ represents

the a posteriori SNR after smoothing. The a posteriori SPP

can be obtained as
P (H1|γ) =

Λ

1 + Λ
(2)

with the generalized likelihood ratio (GLR)

Λ =
P (H1)

P (H0)
·
p(γ|H1)

p(γ|H0)
(3)

where P (H1) is the a priori probability of speech presence,

P (H0) is the a priori probability of speech absence, p(γ|H1)
is the likelihood of speech presence, and p(γ|H0) is the like-

lihood of speech absence.

In [3] the likelihoods of speech presence and speech ab-

sence are modeled by the chi-squared distribution with the

shape parameter ν̄. The effect of smoothing the a posteri-

ori SNR is reflected by an increase of the shape parameter ν̄
which can be identified by relating the first and second mo-

ment obtained from training data as [3]

ν̄ =
(E{γ})2

var{γ}
. (4)

The same shape parameter is used for the likelihoods of

speech presence and absence, resulting in the GLR [3]

Λ[3] =
P (H1)

P (H0)
·

(
1

1 + ξ

)ν̄

· eν̄
ξ

1+ξ
γ (5)

with the a priori SNR ξ = σ2
S/σ

2
N . Finally, the a posteriori

SPP is obtained by employing (2).

2.2. SPP with Super-Gaussian Speech Models

In [5, 6] the likelihood of speech presence is obtained based

on a super-Gaussian model for speech, while smoothing is not

taken into account. To model the super-Gaussian characteris-

tics of speech, we model the clean speech amplitudes by a chi

distribution with shape parameter µ (cf. [9]). While µ = 1
reflects a Gaussian speech model, µ < 1 reflects a super-

Gaussian speech model. To model the noise distribution, a

widely-employed Gaussian model is utilized. With these as-

sumptions, the likelihoods result in [5]

p[5](γ|H1) =

(
µ

µ+ ξ

)µ

· e−γ · 1F1

(
µ; 1;

γ · ξ

µ+ ξ

)
(6)

and
p[5](γ|H0) = e−γ (7)

with the confluent hypergeometric function 1F1(·). Accord-

ingly, for the GLR we obtain [5]

Λ[5] =
P (H1)

P (H0)
·

(
µ

µ+ ξ

)µ

· 1F1

(
µ; 1;

γ · ξ

µ+ ξ

)
(8)

which can then be employed to obtain the a posteriori SPP

using (2).

3. PROPOSED ESTIMATOR

So far we have reviewed two different estimators for the SPP.

While the estimator in Section 2.1 incorporates the averag-

ing of the observation in the statistical model, the estimator

in Section 2.2 reflects the super-Gaussian characteristics of

speech. The averaging has the benefit that outliers can be

reduced, while the super-Gaussian speech model has the po-

tential for a better speech preservation. The key assumption

in this paper is that for moderate to large SNRs we can ap-

proximate the likelihood of speech presence for a smoothed

observation γ by the same parameterized PDF (6), but with an

increase of the shape parameter µ̄ > µ, where µ̄ is the shape

parameter after averaging.

We now aim at obtaining the shape parameter µ̄ of the

super-Gaussian model (8) to also incorporate a smoothing

of the observation. For this, we now compute the first and

second statistical moments of our approximate likelihood for

smoothed observations (6), resulting in [10, Eq. (7.621.4)]

mγ|H1
=

∞∫

0

γ · p[5](γ|H1) dγ = 1 + ξ, (9)

while the second central moment results in [10, Eq. (7.621.4)]

σ2
γ|H1

=

∞∫

0

γ2·p[5](γ|H1) dγ−m2
γ|H1

=
1

µ̄
ξ2+2ξ+1. (10)

Solving for the shape parameter µ̄ we obtain

µ̄ =
ξ2

σ2
γ|H1

m2
γ|H1

· (1 + ξ)2 − 2ξ − 1
. (11)
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Fig. 1. Shape parameter of the likelihood of speech presence for

averaged a posteriori SNR as a function of the a priori SNR

Thus, similar to (4), we can fit our super-Gaussian model also

to smoothed observations by relating the first and second sta-

tistical moments. For a given smoothing process these mo-

ments can be computed using training data. In contrast to (4),

the shape parameter µ̄ in (11) is also a function of the a priori

SNR. As µ in (6) intrinsically models the shape of the speech

distribution, large degrees of averaging are difficult to model

especially in regions where the noise dominates. As a conse-

quence, (11) yields negative—and thus invalid—values for µ̄
whenever

σ2
γ|H1

m2
γ|H1

<
2ξ + 1

(1 + ξ)2
. (12)

However, due to the central limit theorem, the impact of a

super-Gaussian model decreases with an increased averaging.

Thus, for large amounts of smoothing, model (5) can be used

even if the underlying speech is super-Gaussian. Therefore, in

this paper we propose to fit the super-Gaussian model to mod-

erately smoothed observations, while employing the model

in (5) for large amounts of smoothing.

3.1. A Posteriori SNR Averaging Framework

The averaging of γ can be obtained for instance in the cepstral

domain [11] or directly in the time-frequency domain [3]. In

this work, we adopt the time-frequency averaging from [3].

There, it is proposed to use two averaging windows of differ-

ent sizes, namely the local and the global averaging window.

The resulting a posteriori SPPs are finally combined by mul-

tiplication to obtain the final SPP estimator

̂P (H1|γ) = P (H1|γlocal) · P (H1|γglobal). (13)

Please note that different parameters, e. g., µ̄Ξ, ν̄Ξ, are used

for the locally and globally averaged a posteriori SNR. Here,

Ξ stands for either “local” or “global”. Averaging is obtained

in the vicinity of the current time-frequency bin as [3]

γΞ(ℓ, k) =
1

|KΞ| · |LΞ|
·

∑

λΞ∈LΞ

κΞ∈KΞ

γ(λΞ, κΞ) (14)

with LΞ, KΞ being a set of frames and a set of frequency bins

within the averaging window, respectively. Each averaging

Ξ ∆kΞ ∆ℓΞ |KΞ||LΞ| µ̄Ξ ν̄Ξ ζΞ

local 1 2 9 71.4 — 9.6 dB

global 8 2 51 — 25.7 2.9 dB

Table 1. Parameters of the averaging framework

window consists of the current frame ℓ and the previous ∆ℓΞ
frames, hence, the width of each averaging window is |LΞ| =
∆ℓΞ + 1. The height of each averaging window is |KΞ| =
2∆kΞ + 1, i. e., besides the current frequency bin k, ∆kΞ
frequency bins below it and ∆kΞ frequency bins above it are

employed for averaging. Therefore, each averaging window

is of the size |KΞ| · |LΞ|.
To fit the super-Gaussian model to the smoothed data, µ̄Ξ

in (8) was calculated as follows: First, we generated Y sam-

ples artificially by superimposing complex-valued Gaussian-

distributed random samples (representing the noise) as well

as complex-valued random samples with chi-distributed am-

plitude and uniformly distributed phase (representing speech)

at a given SNR ξ. The γ samples were then obtained by tak-

ing the magnitude square of Y and normalizing by a given

noise variance. Then, the moving average of the artificial γ
values was calculated by using a local and a global averag-

ing window of the lengths |KΞ| · |LΞ| from Table 1. Finally,

µ̄Ξ = fΞ(ξ) was estimated employing (11) within a local and

a global window for different a priori SNRs ξ. The result is

depicted in Figure 1.

As in [3] we argue that the a priori SNR ξ in (8) and (5) is

a parameter of our speech presence model. As such it should

not reflect the true local SNR, but an SNR that can be ex-

pected if speech is present in a time-frequency bin. There-

fore, we employ a fixed a priori SNR ζΞ in each averag-

ing window which can be found by minimizing the proba-

bility of misdetection of speech presence for a given range of

true local SNRs [3]. This optimization using the new likeli-

hoods (6) and (7) for smoothed observations yields ζlocal =
9.6 dB for local averaging and ζglobal = 6.6 dB for global

averaging. The corresponding shape parameters can be ob-

tained by applying the resulting fixed a priori SNRs to (11),

resulting in µ̄local = 71.4 and a negative µ̄global. Thus, the

super-Gaussian model can be fitted to the training data for the

moderate local averaging, but not for the strong global aver-

aging. As a consequence, for the global window we propose

to use the model (5), while for the local averaging we employ

the model in (8), resulting in the GLRs

Λlocal =
P (H1)

P (H0)
·

(
µ̄local

µ̄local + ζlocal

)µ̄local

· 1F1

(
µ̄local; 1;

γ · ζlocal

µ̄local + ζlocal

)
, (15)

Λglobal =
P (H1)

P (H0)
·

(
1

1 + ζglobal

)ν̄global

· e
ν̄global

ζglobal

1+ζglobal
γ

(16)
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Fig. 2. Evaluation results of the reference and the proposed SPP

estimators w. r. t. NL and SD [3]

with the shape parameters µ̄local and ν̄global and the fixed a pri-

ori SNRs ζΞ from Table 1. We employed the same averaging

parameters ∆kΞ,∆ℓΞ, ν̄global, and ζglobal as in [3]. From the

likelihood ratios (15), (16), the local and global a posteriori

SPPs are obtained by using (2) and the final SPP estimator is

obtained by combining the local and global SPPs via (13).

4. EVALUATION

In order to evaluate the proposed approach, the following sim-

ulations were carried out: 96 speech signals were taken from

the NTT Multi-Lingual Speech Database [12]. As noise we

employed car noise and factory noise signals from the NTT

Ambient Noise Database [13], as well as pink noise which

was generated by filtering a white noise signal by a filter with

a 1/f frequency response. All database signals were down-

sampled to 8 kHz sampling rate. The desired input SNR was

adjusted between -5 dB and 20 dB in 5 dB steps by scaling

the speech and noise components separately according to the

ITU-T Recommendation P.56 [14]. The noisy speech signal

was processed based on frames with a length of L = 256, a

frame shift of 50 %, and square-root Hann windows for spec-

tral analysis and synthesis.

Each frequency bin in every frame was processed as fol-

lows: The noise power σ2
N (ℓ, k) was estimated using [15], the

a priori SNR ξ(ℓ, k) was obtained by the decision-directed

method with a smoothing factor of 0.98 [1].

Overall, the following three approaches were evaluated:

The first reference approach is based on SPP estimation em-

ploying a super-Gaussian model without averaging from Sec-

tion 2.2, combined with a super-Gaussian amplitude estima-

tor [9, Eq. (12)]. Both estimators are consistent regarding the

speech PDF assumptions, utilizing the same shape parame-

ter value µ = 0.5. Furthermore, here the a priori SNR is

not fixed in the SPP estimator but adapted using the decision-

directed approach. This method is referred to as “SG-SPP

with adapted ξ”.
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based on an MMSE-STSA weighting rule and an SPP estimator

w. r. t. amount of musical noise based on the log-kurtosis ratio (the

lower the value the less the amount of musical noise) [16]

The second reference approach is the SPP estimator from

Section 2.1 combined with the speech spectral amplitude es-

timator [1, Eq. (7)], both being consistently based on a Gaus-

sian speech model. Further, the SPP estimator is based on a

smoothed a posteriori SNR and employs fixed a priori SNRs

to model the likelihoods of speech presence. Therefore, this

method is denoted as “SPP with fixed ξ [3]”.

The proposed approach, denoted as “SG-SPP with fixed ξ
[new]”, combines the proposed approach of Sections 3 and

3.1 and combines them with the super-Gaussian MMSE esti-

mator [9, Eq. (12)] with µ = 0.5. Thus, here we assume a

super-Gaussian speech model consistently for MMSE-STSA

estimation and SPP estimation.

The performance of the SPP estimators was assessed

w. r. t. the missed-hit rate and false-alarm rate using the

measures speech distortion (SD) and noise leakage (NL),

respectively, as proposed in [3]. The measure SD indicates

the percentage of the speech energy that the corresponding

SPP estimator neglects, while the measure NL indicates in

percent how much energy from the noise-only bins remains

unattenuated. Therefore, the lower the NL value, the lower

the residual noise level and the lower the SD value, the lower

the speech distortion.

Outliers in the processed noise may be perceived as an-

noying musical noise. While in [3] the amount of processing

outliers was assessed by the heavy-tailedness of processed

noise histograms, in this work we employ the so-called

weighted log-kurtosis ratio (LKR) [16]. The idea is to com-

pare the kurtosis of the noise component of the noisy speech

signal before and after processing in speech pauses, resulting

in the LKR [16, 17]. Large values of the LKR indicate a

large amount of processing outliers that may be perceived as

annoying musical noise. Please note that while the measures

SD and NL are applied to merely the SPP estimators, the

LKR takes also the performance of the spectral weighting



rules into account.

The results are summarized in Figures 2 and 3. As can be

seen in Figure 2, the proposed SPP estimator outperforms the

reference approaches by achieving the lowest NL level, fol-

lowed by the estimators “SPP with fixed ξ [3]” and “SG-SPP

with adapted ξ” for all input SNR levels. However, the re-

versed order is true for the SD levels which reflects a typi-

cal trade-off in speech enhancement: The amount of speech

distortion is inversely proportional to the amount of residual

noise. However, the proposed approach outperforms the ref-

erence approaches w. r. t. the amount of musical noise, as can

be seen in Figure 3. The proposed approach achieves the best

results (the lowest LKRs), followed by the estimators “SPP

with fixed ξ [3]” and “SG-SPP with adapted ξ”. Informal lis-

tening tests confirmed these results.

5. CONCLUSIONS

In speech presence probability (SPP) estimation several im-

provements have been proposed in the past years. Among

those are the smoothing of the observation to reduce outliers

or the incorporation of a super-Gaussian speech model with

the potential of a better speech preservation. In this work, we

combine those previous approaches, resulting in an estimator

that both incorporates a smoothed observation and a super-

Gaussian speech model. The resulting estimator is shown to

outperform the reference approaches in terms of noise leak-

age and the amount of musical noise.
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