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ABSTRACT
In this paper, we introduce a novel topic n-gram count lan-
guage model (NTNCLM) using topic probabilities of train-
ing documents and document-based n-gram counts. The
topic probabilities for the documents are computed by av-
eraging the topic probabilities of words seen in the docu-
ments. The topic probabilities of documents are multiplied
by the document-based n-gram counts. The products are
then summed-up for all the training documents. The results
are used as the counts of the respective topics to create the
NTNCLMs. The NTNCLMs are adapted by using the topic
probabilities of a development test set that are computed as
above. We compare our approach with a recently proposed
TNCLM [1], where the long-range information outside of
the n-gram events is not encountered. Our approach yields
significant perplexity and word error rate (WER) reductions
over the other approach using the Wall Street Journal (WSJ)
corpus.

Index Terms— Statistical n-gram language model, speech
recognition, mixture models, topic models

1. INTRODUCTION

Statistical n-gram LMs have been used successfully for
speech recognition and many other applications. They com-
pute the probability of the nth word by conditioning on the
previous n− 1 history (h) words. They suffer from the short-
age of long-range information, which limits performance.
To capture the long-range information, one of the earliest
attempts was a cache-based LM that took advantage that a
word observed earlier in a document could occur again. This
helps to increase the probability of the seen words when
predicting the next word [2]. A similar idea was used in
trigger-based LM adaptation, which uses a maximum entropy
approach [3] to raise the probability of unseen but topically
related words. In addition recently, latent topic analysis has
been used broadly to compensate for the weaknesses of n-
gram models. Several techniques such as Latent Semantic
Analysis (LSA) [4,5], Probabilistic Latent Semantic Analysis
(PLSA) [6, 7], and latent Dirichlet allocation (LDA) [8] have
been studied to extract the latent semantic information from
a training corpus. The LDA model has been used success-
fully in recent research work for LM adaptation [1, 9–15].

In [10], a unigram scaling approach is used for the LDA
adapted unigram model to minimize the distance between the
adapted model and the background model [10]. In [1], a topic
n-gram count LM was proposed where the topic probabilities
of n-grams were created by using features of the LDA model.

In this paper, we extend our previous work [1] to incor-
porate the long-range useful information outside of n-gram
events. In [1], TNCLMs were formed by computing the topic
probabilities of background n-gramsP (tk|w1, . . . , wn), (k =
1, . . . ,K) by averaging the topic probabilities of the words
P (tk|wi) present in the n-grams. P (tk|w1, . . . , wn) were
multiplied with the global count of the n-gram C(h,wi) and
then used as the counts of the topics to create the TNCLMs.
However, the TNCLMs do not capture the long-range impor-
tant information outside of the n-gram events. Here, we pro-
pose a novel TNCLM (NTNCLM) where P (tk|w1, . . . , wn)
are derived by using the topic probabilities of the training
documents P (tk|dl), (l = 1, . . . ,M). P (tk|dl) are calcu-
lated by averaging the P (tk|wi) for words seen in the doc-
uments. P (tk|dl) are multiplied with the document-based n-
gram counts C(h,wi, dl) and then summed-up for all training
documents. The results are used as the counts of topics to cre-
ate the NTNCLMs. The TNCLMs and NTNCLMs are both
adapted by using the topic mixture weights obtained by av-
eraging the P (tk|wi) over the seen words of a development
test set dt. The adapted models are interpolated with a back-
ground tri-gram model to capture the local lexical regulari-
ties. The complete idea is described in Figure 1. In the figure,
γk,n and γk,dl represent P (tk|w1, . . . , wn) and P (tk|dl) re-
spectively. Ndl and Ndt describe the the number of words
seen in the training document dl and the development test
set dt. We compare our approach with an adapted n-gram
LM obtained by unsupervised language model adaptation us-
ing latent semantic marginals [10] and the interpolation of the
adapted TNCLM with the background model [1]. We apply
the LM adaptation approaches after the first pass decoding
and have seen that our approach outperforms the conventional
approaches.

The rest of this paper is organized as follows. Section 2
is used for reviewing the LDA model. TNCLM generation is
described in section 3. The proposed NTNCLM generation
is explained in section 4. Section 5 is used to illustrate the
LM adaptation approaches. The experimental setup and re-
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sults are described in section 6. Finally the conclusions are
described in section 7.

2. LATENT DIRICHLET ALLOCATION

LDA is a generative probabilistic topic model for documents
in a corpus. Documents are represented by the random latent
topics1, which are characterized by a distribution over words.
The model can be described as follows:

• Each document dl = w1, . . . , wNdl
is generated as a mix-

ture of unigram models, where the topic mixture weight
θdl is drawn from a prior Dirichlet distribution with pa-
rameter α:

p(θdl |α) =
Γ(

∑K
k=1 αk)∏K

k=1 Γ(αk)
θα1−1
dl1

. . . θαK−1
dlK

(1)

• For each word in document dl:
– Choose a topic tk from the multinomial distribution
θdl .

– Choose a word wi from the multinomial distribution
P (wi|tk, β),

where α = {α1, . . . , αK} is used as the representation count
for the K latent topics, θdl indicates the relative importance
of topics for the document dl and p(wi|tk, β) represents the

1Topics are unobserved in LDA

word probabilities conditioned on the topic with a Dirich-
let prior β and indicates the relative importance of particular
words in a topic tk.

The probability of the document can be estimated by
marginalizing unobserved variables θdl and tk as:

P (dl|α, β) =

∫
p(θdl |α)

Ndl∏
i=1

K∑
k=1

p(tk|dl, θdl)P (wi|tk, β)dθdl

(2)

2.1. LDA Training

The parameters of the LDA model are computed by using the
MATLAB topic modeling toolbox [16,17]. Here, we obtain a
word-topic matrixWP and a document topic matrixDP . An
entry WP (wi, tk) describes the number of times the word wi
has been assigned to topic tk over the training set. An entry
DP (dl, tk) of the DP matrix contains the total occurrences
of words in document dl that are from a topic tk. We used
the above matrices to compute the probability of words given
topics and the probability of topics given documents as [17,
18]:

P (wi|tk, β) =
WP (wi, tk) + β

WP (., tk) + V β
, (3)

P (tk|dl, θdl) =
DP (dl, tk) + α

DP (dl, .) +Kα
, (4)

where WP (wi, tk) is the number of occurrences of word wi
in topic tk, WP (., tk) is the total count of words in topic tk,
DP (dl, tk) holds the total occurrences of words from topic tk
in document dl, DP (dl, .) contains the occurrences of words
from all topics in document dl and V is the total number of
words.

3. TOPIC N-GRAM COUNT LANGUAGE MODEL

The features of the LDA model were used to create the topic
n-gram count language model (TNCLM) [1]. Because of bag-
of-words characteristics of the LDA model, each word has
equal weight in determining the topic mixtures. Also, latent
topics are independent of each other in the LDA topic set. A
constraint was taken such that the total count of an n-gram for
all topics is equal to the count of that n-gram in the training
set. The probability of topic tk given word wi, P (tk|wi) and
the probability of wordwi given topic tk, P (wi|tk) were used
as confidence measures in determining the topic probability
of the n-grams, where P (tk|wi) outperforms P (wi|tk) [1].
In this paper, we used only the confidence measure P (tk|wi).

The topic probabilities of the background n-grams are
computed using the average topic probability of words in the
n-grams. These probabilities are normalized and then multi-
plied by the global counts of the n-grams and finally used as



the counts of the n-grams for the corresponding topics. The
topic probabilities for each n-gram are computed as [1]:

P (tk|w1, . . . , wn) =
1

n

n∑
i=1

P (tk|wi), (5)

where P (tk|w1, . . . , wn) is the probability of the n-gram in
topic tk. P (tk|wi) is computed using the Bayes’s formula:

P (tk|wi) =
P (wi|tk)P (tk)∑K
k=1 P (wi|tk)P (tk)

, (6)

where P (tk) is the prior topic probability and P (wi|tk)
(Equation 3) is the word probability in topic tk. P (tk) is
computed as:

P (tk) =

∑
iWP (wi, tk) + βV∑

k(
∑
iWP (wi, tk) + βV )

. (7)

The topic probabilities for each n-gram are then normal-
ized so that the total topic probabilities for each n-gram are
summed to one and then the topic probabilities are multiplied
with the original count of that n-gram in the training set. For
example, a tri-gram “A B C” is seen 20 times in the training
corpus and for 4 topics, the topic probabilities of the tri-gram
“A B C” are 0.2, 0.3, 0.1 and 0.4, which are computed using
equation 5. Therefore, the counts for the “A B C” in 4 topics
are 4, 6, 2 and 8. However, the results of the multiplication
are the topic n-gram counts for the corresponding topics. The
topic n-gram language models are then generated using the
topic n-gram counts and defined as TNCLMs [1].

4. PROPOSED NTNCLM

The TNCLM model does not capture the information out-
side the n-gram events as it directly uses topic probabilities
of words P (tk|wi) in generating topic probability of n-grams
P (tk|w1, . . . , wn). To compensate for the weakness of this
model, we introduce a novel TNCLM (NTNCLM) that uses
topic probabilities of training documents P (tk|dl) in comput-
ing topic probabilities of n-grams P (tk|w1, . . . , wn).

The topic probabilities of the training documents dl (l =
1, . . . ,M ) are created by averaging the topic probability of
words present in the respective documents as:

P (tk|dl) =
1

Ndl

Ndl∑
i=1

P (tk|wi), (8)

where Ndl is the number of words seen in training document
dl. The topic probabilities for each document dl are then nor-
malized so that the total topic probabilities for each document
are summed to one.

The topic probability for an n-gram is created as:

P (tk|w1, . . . , wn) =

M∑
l=1

P (tk|dl)P (dl|w1, . . . , wn)

=

M∑
l=1

P (tk|dl)
C(w1, . . . , wn, dl)

C(w1, . . . , wn)
,

(9)

The topic probability of the n-gram is then multiplied
with the global n-gram count C(w1, . . . , wn) and the prod-
uct is used as the count of the n-gram for the respective topic.
The results can be written as:

C(w1, . . . , wn, tk) = P (tk|w1, . . . , wn) ∗ C(w1, . . . , wn)

=

M∑
l=1

P (tk|dl)C(w1, . . . , wl, dl),

(10)
where P (tk|dl) are the topic probabilities for training docu-
ments created by Equation 8. The NTNCLMs are then created
by using the respective topic n-gram counts. We also intro-
duce other TNCLMs defined as LDA TNCLMs (LTNCLMs)
by using Equation 10 where the P (tk|dl) is computed by us-
ing the document-topic matrix DP (Equation 4).

5. LM ADAPTATION APPROACH

In the LDA model, a document can be generated by a mixture
of topics. So, for a test document dt = w1, . . . , wNdt

, the
dynamically adapted topic model by using a mixture of LMs
from different topics is computed as:

PATNCLM/ANTNCLM/ALTNCLM (wi|h) =

K∑
k=1

δkPi(wi|h),

(11)
where Pk(wi|h) is the kth TNCLM/NTNCLM/LTNCLM,
PATNCLM/ANTNCLM/ALTNCLM (wi|h) are the adapted
n-gram count LMs and δk is the kth topic mixture weight.
The mixture weights for the TNCLMs and NTNCLMs are
computed as:

P (k|dt) =
1

Ndt

Ndt∑
i=1

P (k|wi), (12)

where Ndt is the number of words seen in the development
test document dt. For the LTNCLMs, the mixture weights are
computed using LDA inference [18].

The ATNCLM/ANTNCLM/ALTNCLMs are then inter-
polated with the background (B) n-gram model to capture the
local constraints using linear interpolation as:

PL(wi|h) = λPB(wi|h)+

(1− λ)PATNCLM/ANTNCLM/ALTNCLM (wi|h),
(13)

where λ is an interpolation weight.



6. EXPERIMENTS

6.1. Data and experimental setup

We used the Wall Street Journal (WSJ) corpus [19] to evalu-
ate the LM adaptation approaches. The SRILM toolkit [20]
and the HTK toolkit [21] are used for generating the LMs and
computing the WER respectively. The ’87-89 WSJ corpus
is used to train the tri-gram background (B) model and the
tri-gram TNCLMs/NTNCLMs/LTNCLMs using the back-off
version of the Witten-Bell smoothing. To reduce the com-
putational cost, we incorporated the cutoffs 1 and 3 on the
background bi-gram and background tri-gram counts respec-
tively. The Witten-Bell smoothing from the SRILM toolkit
is used as the TNCLMs/NTNCLMs/LTNCLMs are generated
using the floating counts. The LDA and the closed vocabu-
lary language models are trained using the 5K non-verbalized
punctuation closed vocabulary. We define the α and β for
LDA analysis as 50/K and 0.01 respectively [17, 18]. The
acoustic model from [22] is used in our experiments. The
acoustic model is trained by using all WSJ and TIMIT [23]
training data, the 40 phones set of the CMU dictionary [24],
approximately 10000 tied-states, 32 gaussians per state and
64 gaussians per silence state. The acoustic waveforms are
parameterized into a 39-dimensional feature vector consisting
of 12 cepstral coefficients plus the 0th cepstral, delta and delta
delta coefficients, normalized using cepstral mean subtraction
(MFCC0−D−A−Z). We evaluated the cross-word models.
The values of the word insertion penalty, beam width, and the
language model scale factor are -4.0, 350.0, and 15.0 respec-
tively [22]. The development and the evaluation test sets are
the si dt 05.odd (248 sentences from 10 speakers) and the
Nov’93 Hub 2 5K test data from the ARPA November 1993
WSJ evaluation (215 sentences from 10 speakers) [19, 25].
The topic mixture weights δ and the interpolation weight λ
are tuned on the development test set. The results are noted
on the evaluation test set.

6.2. Experimental Results

We tested our proposed approaches for various topic sizes.
The perplexity results of the models are explained in Table 1.

Table 1. Perplexity results of the language models
Language Model 25 50

Topics Topics
Background (B) 83.4 83.4
ATNCLM 105.5 134.0
ALTNCLM 86.5 111.4
ANTNCLM 86.2 110.4
B+ATNCLM 75.3 75.6
B+ALTNCLM 74.6 74.8
B+ANTNCLM 74.7 74.9

From Table 1, we can note that the proposed approaches
outperform the ATNCLM [1] in both stand-alone and inter-
polated form for all topic sizes.

We also evaluated the LM adaptation approaches for
speech recognition. We used the unigram scaling approach
of the LDA adapted model (LDA unigram scaling) [10] and
the interpolation of background models with the ATNCLM
model [1] for comparison. We evaluated the WER experi-
ments using lattice rescoring. In the first pass, we used the
background tri-gram language model for lattice generation.
In the second pass, interpolation of the background and the
adapted models are applied for lattice rescoring. The experi-
mental results are plotted in Figure 2. From Figure 2, we can
note that the proposed B+ANTNCLM gives significant WER
reductions of about 9.9% (8.1% to 7.3%), 7.6% (7.9% to
7.3%), 3.9% (7.6% to 7.3%), and 1.4% (7.4% to 7.3%) for 25
topics, and about 7.4% (8.1% to 7.5%), 5.1% (7.9% to 7.5%),
3.8% (7.8% to 7.5%), and 1.3% (7.6% to 7.5%) for 50 top-
ics over the background trigram, LDA unigram scaling [10],
B+ATNCLM [1] and B+ALTNCLM (also proposed by us)
approaches respectively. However, the B+ALTNCLM model
outperforms the background, LDA unigram scaling [10] and
B+ATNCLM [1] approaches respectively. The significance
improvement in WER using the proposed B+ANTNCLM
is done by using a match-pair-test where the misrecognized
words in each test utterance are counted. We obtain the P-
values of 0.03 and 0.02 relative to B+ATNCLM [1] for the
topic sizes 25 and 50 respectively. At a significance level of
0.05, our proposed B+ANTNCLM model outperforms the
B+ATNCLM model [1].

Topic 25 Topic 50
6.8

7
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7.4

7.6

7.8

8

8.2 8.1 8.1

7.9 7.9
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7.5

Background (B) LDA unigram scaling B+ATNCLM
B+ALTNCLM B+ANTNCLM

Fig. 2. WER results of the language models

7. CONCLUSIONS

In this paper, we proposed a novel TNCLM (NTNCLM) using
document-based topic distributions and n-gram counts. The
topic probabilities for training documents are created by aver-
aging the confidence measure (topic probability given words)
of the words present in the documents. Then, they are multi-
plied by the document-based n-gram counts and the products
are summed up for all the training documents. The results



are used as the n-gram counts for the respective topics to cre-
ate the NTNCLM. We also introduce an LDA TNCLM (LT-
NCLM) as above where the topic probabilities for documents
are created by using the document-topic matrix obtained from
the LDA model training. We compare our approaches with a
recently proposed TNCLM [1], which uses the above confi-
dence measures to compute the probability of background n-
grams and is used as the count of the n-grams for the respec-
tive topics. The normalized topic probabilities of the n-gram
are multiplied by the global n-gram count to form the topic
n-gram count for the respective topics. However, TNCLM
does not capture the long-range information outside of the
n-gram events. To compensate for the weaknesses of the
TNCLMs, the NTNCLMs and LTNCLMs are proposed here.
Both TNCLMs, NTNCLMs and LTNCLMs are adapted and
then interpolated with a background trigram model to capture
the short-range information. The proposed approaches yield
better performance over the conventional approaches.
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