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ABSTRACT

This paper shows an adaptive statistical test for QRS detec-
tion of ECG signals. The method is based on a M-ary gen-
eralized likelihood ratio test (LRT) defined over a multiple
observation window in the Fourier domain. The previous al-
gorithms based on maximum a posteriori (MAP) estimation
result in high signal model complexity which i) makes them
computationally unfeasible or not intended for real time ap-
plications such as intensive care monitoring and (ii) in which
the parameter selection conditions the overall performance. A
simplified model based on the independent Gaussian proper-
ties of the DFT coefficients is proposed. This model allows
to define a simplified MAP probability function and to define
an adaptive MAP statistical test in which a global hypothesis
is defined on particular hypotheses of the multiple observa-
tion window. Moreover, the observation interval is modeled
as a discontinuous transmission discrete-time stochastic pro-
cess avoiding the inclusion of parameters that constraint the
morphology of the QRS complexes.

Index Terms— Electrocardiogram (ECG), QRS detec-
tion, M-ary Likelihood Ratio Test.

1. INTRODUCTION

One of the most relevant waveforms in the electrocardiogram
(ECQG) is the QRS complex since it has been used in several
medical applications such as noise cancelation, automated de-
termination of heart rate or computer-based arrhythmia mon-
itoring [1,2]. The QRS complex reflects the electrical ac-
tivity during ventricular contraction, thus the time of its oc-
currence as well as its shape provide relevant diagnostic and
prognostic information in clinical practice [3]. In the past
decades several approaches to QRS detection based on differ-
ent paradigms have been successfully proposed. Examples of
such approaches are based on the field of artificial neural net-
works, genetic algorithms, wavelet transform or filter banks,
as well as other heuristic non linear transforms [2]. Most QRS
detectors have been developed following a three-step struc-
ture [2], that is, a linear filter suppressing noise and artifacts
followed by a nonlinear transformation for signal enhance-
ment. The output of these two stages is then fed to the third
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decision rule stage for detection. The main target of this paper
is focused on the third stage, therefore the proposed method
could be used in combination with detectors described in the
literature which have been developed from ad hoc reasoning
and experimental insight.

Up to our knowledge the first approach based on maxi-
mum a posteriori (MAP) estimation for QRS detection was
proposed in [4]. This method was computationally unfeasi-
ble, thus additional simplifications and approximations on the
MAP estimation were needed to be introduced to reduce the
computation time [5], but still the method could not be con-
sidered as a real time approach, i.e. the estimation of arrival
times are not necessary found in temporal order [5]. On the
other hand, the asymptotic properties of the Discrete Fourier
Transform (DFT) coefficients [6] could be analyzed as well
in the definition of the signal model, i.e. they are defined
as independent Gaussian variables. If these assumptions are
considered in context,f an effective and real-time M-ary LRT
detector could be derived with a less number of parameters to
be estimated, i.e. only the variances of the noise and desired
signal [7].

2. MAP LRT ADAPTIVE QRS DETECTION

2.1. Signal Model

The ECG signal is modeled as a discrete-time stochastic pro-
cess [5]; typically, the observation signal for a real time QRS
detector is given by:

for n=0,...,N—-1

M
where s(n) is the QRS complex with known morphology
(pulse-shaped waveform), arrival time 6, amplitude B and
width D which is corrupted by a stationary, white, Gaussian
process v(n) with variance o2. The Fourier expansion coef-
ficients of the observed signal are assumed to be statistically
independent Gaussian random variables. These coefficients
are obtained by decomposing the signal into overlapped
frames each of size N, < N with a S,-sample window
shift and by computing the J-point windowed DFT spectral
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representation on a frame by frame basis:
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where j denotes the frame index, w represents the window
(typically, a Hamming window to reduce the correlation be-
tween widely separated spectral components) and ||w|| is its
norm. Thus, | X;(k)|? is a consistent estimation of the power
spectral density (PSD) of the signal. In the Fourier domain
the observation window can be rewritten as:
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Thus, once the window size N, is selected, the channel
can be described as a vector sequence X; that alternates
between two possible states, i.e. presence or absence of
pulse-shaped waveforms. Assuming that the total num-
ber of observations is LN N“J +1 = 2L + 1 and the
number of signal observations is Y42 | = 2Q + 1, the
partial observation vectors can be re- -indexed and grouped

into a global observation matrix (from now on buffer):
X = {Xl—La' .. ,Xl_Q,. X .XH_Q,.. .,XH_L}.

2.2. Detector Structure based on MAP M-ary LRT

Given the signal model, the probability for each observation
vector can be evaluated under binary hypothesis testing as:
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where h; = {0,1} is the partial hypothesis, that is, the pres-
ence or absence of the QRS complex in the observation vector
X; and Ag(k) and Ay (k) are the PSDs of the QRS and noise
processes, respectively. Given that the observation vectors X ;
in the X buffer are statistically independent, Hy and H; de-
note the set of hypotheses (or states) h that depends on the
2r + 1 partial hypotheses formulated on the central frames
of the buffer and p(X, Hy) and p(X, Hp) the joint probabili-
ties, a MAP optimum criterion is defined to be an M-ary LRT
(with M = 2L + 1) as follows:
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where the decision threshold 7 is used to tune the operating
point of the detector and p(h) is the a-priori probability of

hypothesis h. Thus, it is required to estimate the a priori
probability of the states, that can be easily measured analyz-
ing the proportions of QRS segments on an ECG template. If
(5) is approximated by taking the maximum log value of the
hypotheses, a revised statistical test can be defined in matrix
form removing the summation symbols as:

logI'™ = max(H1B1 + (J1 — H1)Bo + P1)
—max(HoB1 + (Jo — Ho)Bo + Po) 21 n

Hy
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where H;, is the K x M row-wise matrix of states h,
B, = [logp(Xi|hi),logp(Xal|h2),...,log p(Xar|har)]T,
P; = [log(p(hy)),...,log(p(hg))]T, hj € Hy is the col-
umn vector of the logarithmic a priori probabilities of the
hypotheses in Hy, and Jy is the K x M matrix of ones. The
value K = 2(L — r) + 1 depends on how the sets Ho and H;
are defined.

2.3. Estimation of Statistical Parameters

In a real time QRS detector the processing to be performed
on the incoming signal z(n) is divided into two phases: i)
delimitation of the observation window that should not exceed
the size of the ECG signal period, i.e. it should not include
two QRS complexes; ii) estimation of the model parameters
in (4), e As(k) = E{|S(k)[2} and Ay (k) = E{|V (k)[?}.

2.3.1. Noise Spectrum Estimation

An initial model for the noise spectrum should be determined
from the incoming signal. To this purpose, fiducial points are
computed for a few initial periods of the ECG signal follow-
ing the procedure described in [8]. Once the isoelectric line is
determined, the noise spectrum Vj (k) is backward computed
from these knots and smoothed by averaging [6]. Moreover
the noise spectrum is then updated, in a similar fashion of the
recursive averaging method proposed in [6], during the non-
ORS periods (determined by the detector) by means of a 1st
order IIR filter on the smoothed spectrum:

V](k’) = )\1;‘/}—1(143) + (1 - A'U)Xj (k) (7)

where \, = 0.98.

2.3.2. QRS Spectrum Estimation

The clean QRS spectrum is estimated by combining smooth-
ing, spectral subtraction and conventional two-stage mel-
warped Wiener filter design [9]. The latter attempts to remove
additive noise throughout two filtering stages: the first stage
coarsely reduces noise and whitens residual noise; the second
stage removes any residual noise.

Sj(k) =
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Fig. 1. Hypothesis considered for the derivation of the approx-
imate M-ary LRT and its expected value. The most probable
hypotheses in Hy and H; for a non-QRS to QRS transition.

where A\; = 0.99. Then the Wiener filter H; (k) is designed
as:

H;(k) = (k) where 7; (k) = max (%,nmm> .9

L+m;(k)’
where 1,,:n 1s selected so that the filter yields a 20 dB min-
imum attenuation. Finally the clean QRS spectrum is com-
puted as S (k) = H;(k)X;(k). The latter filter design pro-
cess is repeated twice [9]. With these operations we derive
the ML estimators of the k-th signal spectral component vari-
ance (Ag(k), Ay (k)) in the j-th analysis frame which have
been successfully used in other fields such as speech enhance-
ment [6].

3. APPROXIMATE LOG M-ARY LRT ESTIMATION

For a simplification of (6) a particular transition is analyzed
(see figure 1). This corresponds to a situation where M — V'
observations in the buffer of size M = 2L+1 are QRS frames
from a total of 22 + 1 QRS frames. The most probable hy-
potheses in Hg and Hy, denoted by hg = {h1,0,..., 0}
and hy = {hy1,...,hnr 1} respectively, are evaluated by
taking the max logarithms in (5):

logT* =log p(hi) + 3 _1logp(Xj|hj,1) -
=L log p(Xjlhy) = logn

0

log p(ho)

or equivalently for n = 1:
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Deleting the partial states of h; and hg in common that is
hj1 = hjo it leads to:
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By defining the subset €2 of indexes where j is evaluated
(shaded in light gray in figure 1) and substituting equation (4)
in the previous equation, the decision rule is finally defined as
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is the a-priori SNR for the k-th band
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and v, ; = ‘Xv( 5] denotes the a-posteriori SNR for the k-

th band at the j-th frame of the buffer. In addition, a scaled
decision rule independent of 2 and J:
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is preferred, where K = V' — L 4r — 1 is the cardinality of (2.
This statistical test can be understood as an average of the de-
cision criterion over the selected frames present in the buffer.
Finally, from (13) the expected value can be computed:
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suming stationary white noise and signal models (the SNRs
are constant for all the frequency bands £) it yields:
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Under this naive approximation based on Gaussian processes
the proposed M-LRT may effectively discriminate between
QRS and noise frames for a wide range of SNRs during step
transitions in the observation window. Figure 2 shows an ex-
ample of the database [10] and the result of the proposed QRS
detector an overlap of 25% between consecutive windows.
The selection of the size of the window influences the per-
formance of any detector since it controls the amount of in-
formation processed in the test. Typically the QRS complex
lasts for about {grs = 70 — 110 ms thus a suitable selection
for the observation window is N = tggs - Fs ~ 40 samples.

4. EXPERIMENTS AND DISCUSSION

The proposed detector was mainly evaluated in terms of the
ability to discriminate between QRS and non-QRS periods at
different noise scenarios and SNR levels. Several standard
ECG databases are available for the evaluation of software
QRS detection algorithms [2]. One of these databases is the
MIT-BIH database [10], provided by MIT and Boston’s Beth
Israel Hospital which consists of ten databases for various test
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Fig. 2. Patient 101 of the database [10] sampled with Fy =
360H z. A 25% overlap between observation windows is se-
lected. The M-ary LRT test is performed with M=3.

purposes. The experiments in this paper focus on the Arrhyth-
mia Database which contains 48 half-hour excerpts of two-
channel ambulatory ECG recordings, obtained from 47 sub-
jects studied between 1975 and 1979. The recordings were
digitized at 360 samples per second per channel with 11-bit
resolution over a 10 mV range where several cardiologists in-
dependently annotated each record [10], altogether there are
about 116137 QRS complexes. While some records contain
clear R-peaks and few artifacts (e.g. records 100-107), for
some records the detection of QRS complexes is very diffi-
cult due to abnormal shapes, noise and artifacts (e.g., records
108 and 207).

4.1. Performance Measures

The usage of software QRS detection algorithms in medical
devices requires the evaluation of the detection performance
on standard databases. According to [11], essentially two pa-
rameters should be used to evaluate the algorithms; that is,
S = T}EF—PM; P = % where S denotes the sensitiv-
ity, Pr, the positive likelihood, Tp the number of true posi-
tive detections, Fy the number of false negatives, and Fp the
number of false positives.

Two MAP decision methods are evaluated on the stan-
dard MIT-BIH database in order to get comparable and repro-
ducible results. The former is based on a real time implemen-
tation of the matched-filter proposed in [4]. This approach is
applied to an observation window comparable with the one
used by the other QRS M-ary detector (delimitation of the
observation interval), thus the method is converted into a real
time detector provided that the application of the original ap-
proach to the MIT-BIH records is computationally unfeasible.
Furthermore, we are focussing our attention in the decision
rule stage, that is, the methods based on MAP decision, since
they form a general framework and could be used in conjunc-
tion with other approaches such as linear filtering, non-linear

Table 1. Operation points for the MAP based QRS detectors.
Average and deviation of S and Pr, (N,, = 40, S,, = 10)

S ags PL opy,
1-ary LRT 0.9386 | 0.0852 | 0.9105 | 0.1201
3-ary LRT 0.9418 | 0.0769 | 0.9458 | 0.0816
S-ary LRT 0.9700 | 0.0432 | 0.9141 | 0.1035
7-ary LRT 0.9761 | 0.0625 | 0.8936 | 0.1075

[ matched filter [ 0.9567 | 0.0596 | 0.8915 | 0.1458 |

transformations or heuristics based procedures for the same
detection problem. The model parameters are selected with
values N,, = {40,100} and S,, = {10, 25} samples, respec-
tively. The order of the model is selected to be L = {1, 2, 3},
therefore the size of the observation interval is {70,175} up
to {110,275} samples. Note that the typical P-QRS-T inter-
val duration is about 530 ms (~ 190 samples at 360 Hz) thus
the last value is clearly out of this bound. The matched filter
used as the baseline method is defined in the time domain as
a perfect replica of a QRS template using a synthesized ECG
signal. Thus, the classical method has been designed under
the more favorable conditions by using a time-reversed tem-
plate of the waveform. The maximization of the log function
is carried out on the arrival time 6 among all possible values
in the observation window.

The results of this comparison are shown in table 1, where
the S and the Py, of the proposed and the baseline methods
at the operation point are shown. It is clearly shown that,
while the revised method yields similar QRS detection accu-
racy when compared to the matched filter based detector [4]
at low model order, it exhibits an improved accuracy in de-
tecting QRS periods when the order is increased, i.e M = 7.
The improvements are especially important for poor SNRs
and the presence of artifacts or abnormal QRS shapes. Using
the other combination in the delimitation of the observation
interval, i.e. N,, = {100} and S,, = {25} yields similar re-
sults to those explained before, that is increasing the model or-
der provides an increase in the detection performance except
when M = 9 since the observation interval does not fulfill the
assumptions held in section 2.3, i.e. it contains 325 samples
(~ 900 ms) thus two QRS complexes may be included in it.
As a conclusion it is shown that the M-ary LRT method yields
a significant improvement in S, and in P;, when the model or-
der is greater than three M > 3 and provides similar results
as a trade-off between those measures when compared to the
baseline. Moreover, from this analysis the proposed detector
scheme for M = 5 achieves the best compromise among the
different detectors tested. It yields good results in detecting
QRS and non-QRS periods and exhibits a very slow perfor-
mance degradation at unfavorable noise conditions in QRS
detection.



4.2. Receiver Operating Characteristics Curves

The ROC (receiving operating characteristic) curves have
shown to be very effective for the evaluation of QRS detec-
tors [2,4,5]. These plots, which show the trade-off between
the error probabilities of QRS and non-QRS detection as the
threshold 7 varies, completely describe the detector error
rate. However, the evaluation using the ROC curves requires
a subset of cases or measures under the same acquisition
conditions, i.e. SNR. Thus, averaging the statistical measures
over the records of the database could be also slightly biased
as an assessment procedure. Figure 3 shows the P; versus
the false alarm rate (FARy = 1 — S) for all the records of
the MIT-BIH database under several noise conditions. The
proposed method yields better results than the previous MAP
method for M = 7 and similar results for other detector
configurations.
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Fig. 3. Zoom on the ROC curves by averaging all the tapes in
the database

5. CONCLUSIONS

The use of a M-ary statistical LRT based approach to QRS
detection is analyzed in this paper. The performance of the
proposed approach is fairly compared to a real time imple-
mentation of the classical matched filter method by means of
the MIT-BIH database consisting of an heterogenous database
in QRS morphologies, type of noise, etc. Defining a suit-
able observation interval, both detectors provide similar de-
tection rates but under different parameter tuning conditions.
The classical method requires the selection of a perfect time-
reversed desired waveform to effectively perform in QRS de-
tection, among a large number of parameters [4], while the
parameter tuning of the proposed method is much simpler.
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