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ABSTRACT
A new technique called extended finite impulse response
(EFIR) filtering is developed to nonlinear state estimation
in discrete time state space. The EFIR filter belongs to a
family of unbiased FIR filters which completely ignore the
noise statistics. An optimal averaging horizon of Nopt points
required by the EFIR filter can be determined via measure-
ments with much smaller efforts and cost than for the noise
statistics. These properties of EFIR filtering are distinctive
advantages against the extended Kalman filter (EKF). A pay-
ment for this is an Nopt − 1 times longer operation which,
however, can be reduced to that of the EKF by using parallel
computing. Based on extensive simulations of diverse non-
linear models, we show that EFIR filtering is more successful
in accuracy and more robust than EKF under the unknown
noise statistics and model uncertainties.

1. INTRODUCTION

Nonlinear estimation problems arise in diverse fields of ap-
plications such as navigation, tracking, robotics, communi-
cations, control, etc. A traditional tool here is the extended
Kalman filter (EKF) [1,2] having strong engineering features
such as high accuracy, fast computation, easy coding, and
small memory. However, EKF has several widelly recog-
nized flaws: 1) its estimate can be biased if noise is nonaddi-
tive, 2) it may diverge if nonlinearities and noise are large [3],
and 3) its accuracy can be low if noise covariances are not
well specified or ill-conditioned and noise is nonwhite Gaus-
sian, heavy-tailed, or Gaussian with outliers [4].

Because it is desirable to have an estimator that is more
robust than EKF, several other approaches were developed
during decades [5–17]. The technique called the unscented
transform was used in [12] to transfer the mean and vari-
ance through nonlinearities. A relevant filter called the un-
scented Kalman filter (UKF) has demonstrated better perfor-
mance than EKF when the model is highly nonlinear. For
continuous-time state-space models decomposed into “cells,”
a grid-based method was worked out to approximate the pos-
terior probability density function (pdf) of the process. The
approach has resulted in the hidden Markov model (HMM)
filters [13,14]. A sequential Monte Carlo (SMC) method also
known as a particle filter (PF) [15] was developed to estimate
Bayesian models associated with Markov chains in discrete-
time domain. The reader can find a comprehensive review of
these and other nonlinear filters in [16].

A novel alternative to the recursive EKF is the iterative
extended finite impulse response (EFIR) filter [17, 18]. Un-
like the EKF, UKF, and optimal FIR (OFIR) filters [19, 20],
the EFIR filter totally ignores the noise statistics and initial
error statistics. Similarly to PFs, the EFIR filter exploits most

recent past measurements which number is required to be op-
timal Nopt. A scalar Nopt can be determined by using test
reference measurements or even via regular measurements
without a reference signal [21], thus in a way much easier
than that used to determine the noise statistics required by the
Kalman filter. Finally, the EFIR filter belongs to a regression-
based family of Gauss’s least squares estimators which are
known to often give accuracy that is superior to the best avail-
able EKF [16]. Referring to such properties of EFIR filtering,
one may expect new solutions to nonlinear estimation prob-
lems in different areas of applications. Thus, efficient EFIR
algorithms are required to meet practical needs. Below, we
consider a general nonlinear discrete-time state-space model,
develop an iterative EFIR filtering algorithm, and learn its
properties in a comparison with EKF based on two exam-
ples.

2. EXTENDED UNBIASED FIR FILTERING

In order to provide state estimation on a finite interval of
N points, in this section we consider a general nonlin-
ear discrete-time state-space model and develop an iterative
EFIR algorithm.

2.1 Nonlinear State-Space Model
Consider a nonlinear process represented in state space with
the state and observation equations,

xn = fn(xn−1,un,wn,en) , (1)
zn = hn(xn,vn) , (2)

in which xn ∈ RK is the state vector, un ∈ RL is the input
vector, zn ∈ RM is the measurement vector, and fn(·) and
hn(·) are nonlinear time-varying functions. We suppose that
all random components are zero mean white Gaussian and
uncorrelated. Namely, the process noise wn ∈ RP, the in-
put noise en ∈ RH , and the observation noise vn ∈ RM have
the properties: E{wn} = 0, E{en} = 0, E{vn} = 0, and
E{wie

T
j }= 0, E{wiv

T
j }= 0, and E{vie

T
j }= 0 for all i and

j. The noise covariances are depicted as Q = E{wnw
T
n },

L= E{ene
T
n }, and R= E{vnv

T
n }.

To apply a technique such as Kalman filtering, both (1)
and (2) need to be expanded to the 1-order or 2-order Tay-
lor series [1, 2]. Aimed at demonstrating advantages of the
FIR approach and referring to the fact that the 2-order expan-
sion gives no definitive advantages [17, 22], below we em-
ploy only the 1-order expansions of fn(·) at n− 1 and hn(·)
at n under the following suppositions. We think that un is
slow enough and such that the difference un −un−1 is in-
significant. We also allow the initial values to be known, to



Table 1: EKF Algorithm

Input: zn, x̂0, P0, R, Q, L
1: for n = 1 : M do
2: x̂−

n = fn(x̂n−1,un,0,0)

3: P−
n = FnPn−1F

T
n +WnQWT

n +EnLE
T
n

4: Kn =P−
n H

T
n (HnP

−
n H

T
n +TnRnT

T
n )

−1

5: x̂n = x̂−
n +Kn[zn −hn(x̂

−
n ,0)]

6: Pn = (I−KnHn)P
−
n

7: and for
Output: x̂n

mean that the noise components at the start point are zeros.
Accordingly, the expanded nonlinear functions become

fn = Fnxn−1 + ūn +Wnwn +Enen +ξn , (3)
hn = Hnxn + z̄n +Tnvn +ζn , (4)

where Fn = ∂ fn
∂x

∣∣∣
x̂n−1

, Wn = ∂ fn
∂w

∣∣∣
x̂n−1

, En = ∂ fn
∂e

∣∣∣
x̂−

n
, Tn =

∂hn
∂v

∣∣∣
x̂−

n
, and Hn = ∂hn

∂x

∣∣∣
x̂−

n
are Jacobian and both ūn =

fn(x̂n−1,un,0,0)−Fnx̂n−1 and z̄n = hn(x̂
−
n )−Hnx̂

−
n are

known. Here, x̂n is the estimate1 and x̂−
n is the prior esti-

mate of xn. The residuals ξn and ζn are supposed to be small
if the model is sufficiently smooth.

The 1-order expanded state-space model is thus

xn = Fnxn−1 + ūn + ẽn + w̃n +ξn , (5)
zn = Hnxn + z̄n + ṽn +ζn , (6)

where the zero mean noise vectors w̃n =Wnwn, ẽn =Enen,
and ṽn = Tnvn have the covariances Q̃n = FnQFT

n , L̃n =
EnLE

T
n , and R̃n =TnRTT

n , respectively.
Provided (5) and (6), the EKF can be coded as in Table

1, in which the initial state estimate x̂0 and covariances P0,
R, Q, and L are supposed to be known. The prior estimation
error covariance matrix P−

n and estimation error covariance
matrix Pn are defined as

P−
n = E{(xn − x̂−

n )(xn − x̂−
n )

T} , (7)

Pn = E{(xn − x̂n)(xn − x̂n)
T} . (8)

and we notice again that the required noise statistics P0, R,
Q, and L are typically not well known to the engineer [4]
that may cause unacceptable errors in EKF.

2.2 EFIR Filtering Algorithm
Unlike the recursive EKF, the iterative EFIR filter [17] uti-
lizes measurements zn available on an interval of N past
neighboring points from m = n−N +1 to n. The EFIR filter
totally ignores the covariances R, Q, L, and P0. Instead, it
requires an optimal averaging interval of Nopt points in or-
der to minimize the mean square error. There are two simple
ways to find Nopt:

1x̂n|k means the estimate at n via measurement from the past to k. Below,
we use the following notations: x̂n , x̂n|n and x̂−

n , x̂n|n−1.

• Via test measurements implying a known model xn by
minimizing the trace of Pn,

Nopt = argmin
N

{trP(N)} . (9)

• Utilizing measurements with no reference signal as
shown in [21].
The EFIR filtering estimate has the Kalman form

x̂l = x̂−
l +Kl [zl −hl(x̂

−
l )] , (10)

in which an iterative variable l ranges from m+K to n, where
K is the number of the states. For each time index n, the
output is taken when l = n. The bias correction gain

Kl =GlH
T
l (11)

is defined and updated iteratively via the generalized noise
power gain (GNPG)

Gl = [HT
l Hl +(FlGl−1F

T
l )

−1]−1 . (12)

To avoid singularities, iterative computation of (10) starts
at m+K and all values at s=m+K−1 are computed in short
batch forms as [24]

x̂s = Fs . . .Fm+1Λs,mH
T
s,mYs,m , (13)

Gs = Fs . . .Fm+1Λs,mF
T
m+1 . . .F

T
s , (14)

where Λs,m = (HT
s,mHs,m)

−1 and

Ys,m =
[
yT

s . . . yT
m+1 y

T
m
]T

, (15)

Hs,m =


HsFs . . .Fm+1

...
Hm+1Fm+1

Hm

 . (16)

Unlike the EKF relying on x̂0, the EFIR filter needs Nopt
known initial estimates or linear measurements united in a
vector yn. Since yn may be unavailable in nonlinear mod-
elling, the following options can be considered:
• If yn is available, then compute x̂s via (13) using (15)

and (16) and set ys = x̂s.
• If yn is unavailable, then the output of EKF or some other

estimator (even rough) can be used as ys. Otherwise, if
all of the states are observable by zn, a solution to zn =
hn(xn,0) for xn can be employed as yn [17].

• If (2) is linear, then set yn = zn.
Based upon the results obtained in [17] and following

the above-given notations, an iterative EFIR filter associated
with (5) and (6) can be coded as in Table 2. Provided zn and
yn, it needs only N and K to start computing and updating
all the vectors and matrices. No noise statistics are involved.
Herewith, there are two specifics which should be taken into
account by the users:
• Because GNPG is almost unity on an interval of K points,

Gs in many cases can be substituted with an identity ma-
trix I.

• The EFIR algorithm operates in Nopt − 1 times slower
than EFK owing to iterations. Therefore, its implementa-
tion based on parallel computing may be preferable.



Table 2: EFIR Filtering Algorithm

Input: zn, yn, K, N
1: for n = N −1 : M do
2: m = n−N +1, s = m+K −1

3: x̃s =

{
ys , if s < N −1
x̂s , if s > N −1

4: Gs = Fs . . .Fm+1(H
T
s,mHs,m)

−1FT
m+1 . . .F

T
s

5: for l = m+K : n do
6: x̃−

l = fl(x̃l−1,ul ,0,0)

7: Gl = [HT
l Hl +(FlGl−1F

T
l )

−1]−1

8: Kl =GlH
T
l

9: x̃l = x̃−
l +Kl [zl −hl(x̃

−
l )]

10: and for
11: x̂n = x̃n

12: and for
Output: x̂n

3. APPLICATIONS

As examples of applications, we first consider indoor robot
localization provided using radio frequency identification
(RFID) tags. We then consider tracking of a moving object
with temporary model uncertainties.

3.1 Robot Localization
A robot travels in direction d with coordinates xn and yn on
an indoor floorspace. It measures distances to two RFID tags,
A and B, and its trajectory is controlled by the left and right
wheels. The distance between the wheels is b = 1 m and the
incremental distances vehicle travels by these wheels are dL
and dR. The pose angle Φn is measured with an imbedded
fiber optic gyroscope (FOG) [23].

The robot expanded state-space model is (5) and
(6) in which xn = [xn yn Φn ]

T , un = [dLn dRn ]
T , wn =

[wxn wyn wΦn ]
T , en = [eLn eRn ]

T , Tn = I, Wn = Fn,

Fn =

 1 0 −dn sin(Φ̂n−1 +
1
2 ϕn)

0 1 dn cos(Φ̂n−1 +
1
2 ϕn)

0 0 1

 , (17)

En =
1
2b

[ becn +dnesn becn −dnesn
besn −dnecn besn +dnecn

−2 2

]
, (18)

Hn =


x̂−n −x1

u1n

ŷ−n −y1
u1n

0
x̂−n −x2

u2n

ŷ−n −y2
u2n

0
0 0 1

 , (19)

where u1n =
√
(y1 − ŷ−n )2 +(x1 − x̂−n )2 + c2

1, u2n =√
(y2 − ŷ−n )2 +(x2 − x̂−n )2 + c2

2, dn = 1
2 (dRn + dLn),

ϕn ∼= 1
b (dRn − dLn), ecn = cos

(
Φ̂−

n + ϕn
2

)
, and

esn = sin
(

Φ̂−
n + ϕn

2

)
. We allow all the covariance ma-
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Figure 1: Measurements and EKF and EFIR filtering estimates of
robot location within the ranges of two RFID tags, A and B, in the
ideal case of fully known noise statistics and Nopt = 74.

trices to be diagonal and set the standard deviations
σx = σy = σL = σR = 1 mm, σΦ = 0.5◦, σv1 = σv2 = 5 sm,
and σv3 = 2◦. The reader range is supposed to be r = 6 m.
We place a tag A at (0,6) m and tag B at (0,0) m and let
dL = 0.12 mm and dR = 0.24 mm. Simulation is provided at
5000 points with time interval T allowing Gs = I.

Since direct measurements of xn and yn are unavailable,
we solve the inverse problem in (6) for x1 = x2 = y2 = 0 and
y1 = 6 m, and provide “linear” measurements x̃n and ỹn of xn
and yn united in a measurement vector yn = [ x̃n ỹn ]

T . Typ-
ical measurements x̃n and ỹn along with the EKF and EFIR
estimates are shown in Fig. 1 for exactly known noise co-
variances R, Q, and L, initial state x̂0 = y0, and initial error
P0 = 0.

By test measurements, we obtain the model xn and find
Nopt = 74 by minimizing the trace of Pn via (9) as shown
in Fig. 2a. Under such conditions, the estimates sketched in
Fig. 1 can be considered as the best available by the EFIR
filter and EKF. It is seen that the estimates are consistent, al-
though both filters produce larger errors close to the bound-
ary linking the tags.

Because an ideal situation is unfeasible, we next learn ef-
fect of errors in the noise covariances on EKF estimates. In
doing so, we introduce a correction coefficient p to the co-
variance matrices as p2R, Q/p2, and L/p2 and compute the
trace of P(p) using (8) for EKF as shown in Fig. 2b. Here,
we also depict the p-invariant trace of P for the EFIR filter
(Nopt = 74). As expected, the EKF is a bit more accurate
than EFIR filter in the ideal case of p = 1. However, that is
only when 0.6 < p < 2 that EKF outperforms the EFIR filter
with an insignificant difference of about 0.5 mm. Otherwise,
the EFIR filter is more accurate. Since a scalar Nopt can be
found in a way much easier than that required for R, Q, and
L, we consider it as a distinctive advantage of the EFIR filter.
Note that, for the sake of correctness, the covariance matrices
must first be specified in continuous time and then converted
to discrete time that requires additional mathematical efforts.
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Moreover, cost measurements are commonly required to de-
termine R, Q, and L.

Practical experience shows that errors in the determina-
tion of R, Q, and L can be large [4]. On the other hand,
Nopt can be found accurately even without a reference sig-
nal [21]. We therefore admit p = 5 and Nopt = 74 and take a
more precise look at possible estimation errors εn = xn − x̂n
in the time domain. Typical results sketched in Fig. 3 re-
veal larger “slow” noise in all EKF estimates. In an oppo-
site case of p < 0.5, all EKF estimates are accompanied with
larger “fast” noise. Moreover, the EKF has appeared to be
strongly addicted to divergence when p < 0.5. This fact still
unknown in nonlinear filtering may help viewing the Kalman
divergence from the other side. Returning back to Fig. 1, we
finally notice that in the ideal case of p = 1 the EKF and
EFIR estimates do not get away essentially from each other
and are almost indistinguishable.

3.2 Tracking with Temporary Model Uncertainties
We now consider a typical problem when two distance mea-
surement stations (DMSs) are located at (0,0) and (0,a =
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Figure 3: Typical time-domain errors of EKF and EFIR filtering
corresponding to Fig. 1 for p = 5 and Nopt = 74: (a) coordinate x,
(b) coordinate y, and (c) heading Φ.

50 m) and that a moving object and DMSs are in a horizon-
tal plane. Each DMS transmits a pulse that is reflected from
the object and returns back to DMS. The transit time is inter-
preted in terms of distance d1 or d2.

We suppose that an object moves in the presence of noise
along each of the axes and has four states (K = 4): x1n is the
coordinate x; x2n velocity along x; x3n > 0 coordinate y; and
x4n velocity along y. The behavior is modeled with equations

xn = Axn−1 +wn , (20)
yn = hn(xn)+vn , (21)

in which xn = [x1n x2n x3n x4n ]
T and

A=

 1 τ +δn 0 0
0 1 0 0
0 0 1 τ +δn
0 0 0 1

 , (22)

where δn ̸= 0 if 400 6 n 6 440 and is zero otherwise. To gain
the effect, we set δn = 10 s ≫ τ = 0.1 s. It is supposed that
white Gaussian noise wn = [0 w2n 0 w4n ]

T is zero mean with
the variances σ2

w = σ2
w2 = σ2

w4 and

R= σ2
w

 τ2/3 τ/2 0 0
τ/2 1 0 0

0 0 τ2/3 τ/2
0 0 τ/2 1

 . (23)

In such a model we have

hn(xn) =

[ √
x2

n + y2
n√

(a− xn)2 + y2
n

]
(24)

and allow noise vn = [v1n v2n ] to have the variance σ2
v =

σ2
v1 = σ2

v2 and covariance

Q=

[
σ2

v 0
0 σ2

v

]
. (25)
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Figure 4: Effect of the temporary model uncertainty occurred from
n = 400 to n = 440 on the estimation errors with p > 1.

Simulation has been conducted at 1000 points with step
τ = 0.1 s for σw = 0.01 m and σv = 0.2 m. The result shown
in Fig. 4 confirms a statement made in [24] for linear filter-
ing: EKF is much lesser robust against the temporary model
uncertainties in the presence of errors in noise covariances.

4. CONCLUSIONS

In this paper, we have developed and studied an efficient it-
erative EFIR filtering algorithm. We have also shown several
important advantages of this algorithm against the recursive
EKF. It is only within a narrow range around the ideal condi-
tions that EKF has better accuracy than EFIR. Otherwise, er-
rors in EKF grow rapidly and may cause divergence, whereas
the EFIR filter ignoring noise statistics remains at the same
error level. Of practical importance is that the only tuning
scalar value Nopt required by the EFIR filter can easily be
specialized via test measurements or even using regular mea-
surements with no reference. Moreover, the determination of
Nopt requires much smaller efforts and cost than for the noise
statistics, especially if the process is time-varying. A pay-
ment for this is an Nopt − 1 times longer operation required
by the EFIR algorithm to complete iterations. This drawback
can be circumvented using parallel computing.
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