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Abstract—Recovering signals that has a sparse representation
from a given set of linear measurements has been a major topic
of research in recent years. Most of the work dealing with this
subject focus on the reconstruction of the signal’s representation
as the means to recover the signal itself. This approach forces the
dictionary to be of low-coherence and with no linear dependencies
between its columns. Recently, a series of contributions show that
such dependencies can be allowed by aiming at recovering the
signal itself. However, most of these recent works consider the
analysis framework, and only few discuss the synthesis model.
This paper studies the synthesis and introduces a new mutual
coherence definition for signal recovery, showing that a modified
version of OMP can recover sparsely represented signals of a
dictionary with very high correlations between pairs of columns.
We show how the derived results apply to the plain OMP.

I. INTRODUCTION

Much attention has been given to the problem of recovering
a sparse signal from a given set of linear measurements in the
recent decade. In the basic setup, an unknown signal x ∈ Rd

passes through a given linear transformation M ∈ Rm×d

(including m < d) with an additive noise e ∈ Rm, providing
y = Mx + e. The signal x is assumed to have a k-sparse
representation α ∈ Rn under a given dictionary D ∈ Rd×n,
i.e. x = Dα and α has at most k non-zero entries. Most
existing work dealing with the problem of estimating x from
y focuses on the recovery of the signal’s representation,
assuming that this would lead to the desired signal recovery.
This approach forces D to be incoherent, and in particular,
with no linear dependencies between small groups of its atoms.

Recently, a series of papers have shown that such dependen-
cies can be permitted by aiming at estimating the signal itself
[1], [2], [3], [4], [5]. Indeed, in [3], [4], [5] it is even suggested
that such linear dependencies should be encouraged. However,
these contributions consider the ”analysis” framework. A first
clue that this is not unique to the analysis model but rather
applicable also to the ”synthesis” appears in [1]. Though its
results are for signals from the analysis model, the recovery
conditions rely on the D-RIP, a synthesis model property.

The work reported in [6] is different and daring, as it
addresses the synthesis model, presenting a variation of
CoSaMP that targets the recovery of the signal directly. In
their theoretical study, they use the D-RIP to analyze the
algorithm’s performance assuming the existence of an efficient
near-optimal projection scheme, like in [4]. However, the
availability of such a projection is questionable in the general
case. Another recent work that exploits the D-RIP in the
context of the synthesis is [7], proposing stable signal recovery

conditions for the basic synthesis ℓ0-minimization problem.
It is interesting to note that in [6] it is observed that

orthogonal matching pursuit (OMP) [8], though not backed
up theoretically, achieves some success in recovering signals
in the presence of high coherence in the dictionary. In this
work we make the first steps to explain this behaviour. We
propose a slightly modified version of OMP, OMPϵ,2, and
analyze its performance in the noiseless case (e = 0). Instead
of using the D-RIP, we rely on a new property of M and
D: The ϵ-coherence µϵ, which generalizes the definition of
the regular coherence µ. Using this definition we show that if
k ≤ 1

2 (1+
1
µϵ
)−O(ϵ) then the OMPϵ,2 signal recovery error is

O(ϵ). This result implies that OMPϵ,2 achieves an almost exact
reconstruction in the case of very high correlations within pairs
of dictionary columns. We draw also the connection between
OMP and OMPϵ,2. Note that our conditions do not include the
need for an efficient projection, as needed in [6] .

The organization of this paper is as follows. Section II
introduces the ϵ-coherence along with other new definitions. In
Section III a modified version of OMP is introduced to support
high correlation between pairs of columns. In Section IV the
algorithm is analyzed using the ϵ-coherence providing some
performance guarantees for the noiseless case. In Section V
the derived results are demonstrated empirically.

II. NEW COHERENCE DEFINITION

We start with some notation. The largest singular value
of a matrix M is denoted by σM. The i-th column/element
of a matrix/vector D/x is denoted by di/xi, and the sub-
matrix/vector with the entries of the support set T by DT /αT .
By abuse of notation, αT corresponds both to the sub-vector
with these entries alone and to the zero padded one. We denote
by WD a diagonal matrix that contains the norms of the
columns of D on its diagonal, i.e, Wi,i = ∥di∥2.

We turn to introduce some definitions which serve as build-
ing blocks in our proposed algorithm and theoretical study.
As in [9] the columns of MD are assumed to be normalized,
since if this is not the case a simple scaling can be applied.

Definition 2.1 (ϵ-coherence): Let 0 ≤ ϵ < 1, M be a
fixed measurement matrix and D be a fixed dictionary. The
ϵ-coherence µϵ(M,D) is defined as

µϵ(M,D) = max
1≤i<j≤n

|⟨Mdi,Mdj⟩| (1)

s.t.
|⟨di,dj⟩|2

∥di∥22 ∥dj∥22
< 1− ϵ2.
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For calculating µϵ(M,D), one may compute the Gram ma-
trices GMD = D∗M∗MD and GD = W−1

D D∗DW−1
D . The

ϵ-coherence is simply the value of the largest off-diagonal
element in absolute value in GMD, corresponding to an entry
in GD that is smaller in its absolute value than

√
1− ϵ2. Note

that for D = I, the ϵ-coherence coincides with the regular
coherence µ(M) and we have µϵ(M, I) = µ(M). When it is
clear to which M and D we refer, we use simply µϵ.

Definition 2.2 (ϵ-independent support set): Let 0 ≤ ϵ < 1,
D be a fixed dictionary. A support set T is ϵ-independent with
respect to a dictionary D if ∀i ̸= j ∈ T,

|⟨di,dj⟩|2

∥di∥2
2∥dj∥2

2

< 1− ϵ2.
Definition 2.3 (ϵ-closure): Let 0 ≤ ϵ < 1 and D be a fixed

dictionary. The ϵ-closure of a given support T is defined as
closϵ,2(T ) = {i|∃j ∈ T,

|⟨di,dj⟩|2

∥di∥2
2∥dj∥2

2

≥ 1− ϵ2}.
The ϵ-closure of a support T extends it to include each

column in D which is ”ϵ-correlated” with elements included
in T . Obviously, T ⊆ closϵ,2(T ). Note that the last two
definitions are related to a given dictionary D. If D is clear
from the context, it is omitted.

III. ϵ-ORTHOGONAL MATCHING PURSUIT

In order to treat the ϵ dependencies in a dictionary we
propose the ϵ-orthogonal matching pursuit (OMPϵ,2) presented
in Algorithm 1, which is a modification of OMP [8]. OMPϵ,2

is the same as the regular OMP but with the addition of the
ϵ-closure step. The methods coincide if ϵ = 0 as OMP’s or-
thogonality property guarantees not selecting the same vector
twice and thus the ϵ-closure step in OMPϵ,2 has no effect.

IV. ALGORITHM RECOVERY GUARANTEES

We start with the following Lemma.
Lemma 4.1: Let x = Dα, T be the support of α, T̃ be a

support set such that T ⊆ closϵ,2(T̃ ), βi =
⟨di,dF (i,DT )⟩

∥dF (i,DT )∥2

2

and

ĩ = F (i,DT ) is a function of i such that |⟨di,dĩ⟩|2
∥di∥2

2∥dĩ∥2

2

≥ 1−ϵ2.

If there are several possible ĩ for a given i, choose any one of
those and proceed. For the construction

x̃ =
∑

i∈T∩T̃

diαi +
∑

i∈T\T̃

βidF (i,DT )αi, (2)

we have

∥x− x̃∥22 ≤
∥∥∥WDT

αT\T̃

∥∥∥2
1
ϵ2. (3)

Proof: Note that x− x̃ =
∑

i∈T\T̃
(
di − βidF (i,DT )

)
αi and∥∥di − βidF (i,DT )

∥∥2
2
= ∥di∥22

(
1− |⟨di,dĩ⟩|2

∥di∥2
2∥dĩ∥2

2

)
≤ ∥di∥22 ϵ2.

The Cauchy-Schwartz inequality with some arithmetics gives

∥x− x̃∥22 =

∥∥∥∥∥∥
∑

i∈T\T̃

(
di − βidF (i,DT )

)
αi

∥∥∥∥∥∥
2

2

(4)

=
∑

i,j∈T\T̃

(
di − βidF (i,DT )

)∗ (
dj − βjdF (j,DT )

)
αiαj

≤
∑

i∈T\T̃

ϵ2 ∥di∥22 α
2
i +

∑
i ̸=j∈T\T̃

ϵ2 ∥di∥2 ∥dj∥2 αiαj .

Algorithm 1 ϵ-Orthogonal Matching Pursuit
Require: k,M,D,y where y = Mx+ e, x = Dα, ∥α∥0 ≤
k and e is an additive noise.

Ensure: x̂OMPϵ,2 : k-sparse approximation of x.
Initialize estimate x̂0 = 0, residual r0 = y, support T̂ 0 =
Ť 0 = ∅ and set t = 0.
while t ≤ k do
t = t+ 1.
New support element: it = argmaxi ̸∈Ť t−1 |d∗

iM
∗(rt−1)|.

Extend support: T̂ t = T̂ t−1 ∪ {it}.
Calculate a new estimate: x̂t

OMPϵ,2
= DT̂ t(MDT̂ t)†y.

Calculate a new residual: rt = y −Mx̂t
OMPϵ,2

.
Support ϵ-closure: Ť t = closϵ,2(T̂

t).
end while
Form the final solution x̂OMPϵ,2 = x̂k

OMPϵ,2
.

By the definitions of the ℓ1-norm and WDT we have that the
rhs (right-hand-side) of (4) is equal to the rhs of (3). �

Theorem 4.2: Let 0 ≤ ϵ < 1, M be a fixed measurement
matrix, D be a fixed dictionary with ϵ-coherence µϵ =
µϵ(M,D) and y = Mx be a set of measurements of x = Dα
where α is supported on T and |T | = k. Let T̃ ⊆ T be an
ϵ-independent set such that T ⊆ closϵ,2(T̃ ) and x̃ = Dα̃ is
constructed according to (2) such that α̃ is supported on T̃ . If

k <
1

2
(1 +

1

µϵ
)−

2 ∥WDα̃∥1 +
∥∥∥WDαT\T̃

∥∥∥
1

|α̃min|µϵ
σMϵ, (5)

where α̃min is the minimal non-zero entry in absolute value of
α̃ , then after k iterations at most, x̂OMPϵ,2 satisfies∥∥x̂OMPϵ,2 − x

∥∥2
2
≤

∥∥∥WDT\T̃
αT\T̃

∥∥∥2
1
ϵ2 + ∥WDα̃∥21 ϵ

2. (6)

In particular, if T is an ϵ-independent set then α = α̃ and∥∥x̂OMPϵ,2 − x
∥∥2
2
≤ ∥WDα∥21 ϵ

2. (7)

Before proceeding we comment on the role of ϵ and T̃ in the
theorem. If two columns are ϵ-correlated and we use the reg-
ular coherence µ, the condition in (5) cannot be met. The use
of ϵ-coherence allows us to ignore these correlations and have
a reduced coherence value. Thus, the value of ϵ determines
the level of correlations the algorithm can handle. Condition
(5) bounds this level by

1
2 (µϵ+1)−kµϵ

2∥WDα̃∥1+∥WDαT\T̃∥1

|α̃min|
σM

. Remark

that as ϵ approaches zero the value of µϵ approaches µ0, a
mutual coherence of D that ignores the dependent columns.

The set T̃ is needed in the theorem because the columns of
DT , which span x, might be ϵ-correlated or even dependent.
To avoid that, we select the maximal subset of T which
is ϵ-independent and still includes T in its ϵ-closure. The
construction of such a maximal subset is easy. We start by
initializing T̃ = T , and then sequentially for each index
i ∈ T̃ update T̃ = T̃ \ closϵ,2({i}). The resulting subset T̃ is
guaranteed to be ϵ-independent and have T ⊆ closϵ,2(T̃ ).

The following key Lemma is used in the Theorem’s proof.
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Lemma 4.3: Under the same setup of Theorem 4.2, we have

T̃ ⊆ Ť k = closϵ,2(T̂
k). (8)

Proof: We prove by induction on the iteration t ≤ |T̃ | = k̃ that
either T̃ ⊆ Ť t or ∃i ∈ T̃ such that i ∈ Ť t and i ̸∈ Ť t−1. Since
the induction guarantees that in each iteration a new element
from T̃ is included in Ť t, after k ≥ k̃ iterations (8) holds.

The basis of the induction is t = 1. Define T̄ = closϵ,2(T̃ ).
The basis holds if in the first iteration we select an ele-
ment from T̄ . This is true due to the fact that ∀i, j ∈ T ,
i ∈ closϵ,2({j}) iff j ∈ closϵ,2({i}). Thus, we need to require

max
i∈T̄

|d∗
iM

∗y| > max
i∈T̄C

|d∗
iM

∗y| . (9)

First note that y = Mx̃+M(x− x̃). Thus, using the triangle
inequality, the Cauchy-Shwartz inequality and the facts that
the ℓ2-norm is multiplicative and ∥Mdi∥2 = 1, (9) holds if

max
i∈T̄

|d∗
iM

∗Mx̃| > max
i∈T̄C

|d∗
iM

∗Mx̃|+ 2 ∥M(x− x̃)∥2 . (10)

In order to check when the last happens we shall bound its
lhs (left-hand-side) from below and its rhs from above.

Assuming w.l.o.g that the index of the largest entry in α̃ is
1, we have for the lhs of (10)

max
i∈T̄

|d∗
iM

∗Mx̃| ≥ |d∗
1M

∗Mx̃| = |
∑
l∈T̃

d∗
1M

∗Mdlα̃l| (11)

≥ |d∗
1M

∗Md1α̃1| −
∑

l∈T̃ ,l ̸=1

|d∗
1M

∗Mdlα̃l|

≥ α̃1 − µϵ

∑
l∈T̃ ,l ̸=1

|α̃l| = (1− (k̃ − 1)µ) |α̃1| ,

where the first inequality is due to the triangle inequality; the
second is due to the fact that ∥Mdi∥2 = 1, the definition of µϵ

and the Cauchy-Schwartz inequality; and the last is because
α̃1 is the largest element in α̃ and |T̃ | = k̃.

We turn now to bound the rhs of (10) from above. Using
the same considerations, we have

max
i∈T̄C

|d∗
iM

∗Mx| = max
i∈T̄C

|
∑
l∈T̃

d∗
iM

∗Mdlα̃l| (12)

≤ max
i∈T̄C

∑
l∈T̃

|d∗
iM

∗Mdlα̃l| ≤
∑
l∈T̃

µϵ |α̃l| ≤ |α̃1| k̃µϵ.

Plugging (11) and (12) into (10) and then using Lemma 4.1
with the fact that ∥M∥2 = σM gives us the condition

k̃ <
1

2
(1 +

1

µϵ
)− σM

µϵα̃1

∥∥∥WDT
αT\T̃

∥∥∥
1
ϵ, (13)

for selecting an element from T̄ in the first iteration.
Having the induction basis proven, we turn to the induction

step. Assume that the induction assumption holds till iteration
t− 1. We need to prove that it holds also in the t-th iteration.
Let T̄ t = closϵ,2(T̃ \ Ť t−1)). This set includes the ϵ-closure
of elements in T̃ for which an element was not selected in the
previous iterations. For proving the induction step it is enough
to show that in the t-th iteration we select an index from T̄ t:

max
i∈T̄ t

∣∣d∗
iM

∗rt−1
∣∣ > max

i∈(T̄ t)C\Ť t−1

∣∣d∗
iM

∗rt−1
∣∣ . (14)

On the rhs we do not check the maximum over elements in
Ť t−1 because OMPϵ,2 excludes these indices in the step of
selecting a new element. As in the basis of the induction, in
order to check when (14) holds we shall bound its lhs from
below and its rhs from above. Let x̃t−1 =

∑
i∈T̃\Ť t−1 diα̃i+∑

i∈Ť t−1 βidF (i,DT̃ )α̃i be constructed as in (2) where we use
the fact that α̃ is supported on T̃ . Denoting r̃t−1 = (I −
MDT̂ t−1(MDT̂ t−1)†)Mx̃t−1 and using a similar argument
like in (10) we have that (14) holds if

max
i∈T̄ t

|d∗
iM

∗r̃t−1| > max
i∈(T̄ t)C\Ť t−1

|d∗
iM

∗r̃t−1| (15)

+2
∥∥r̃t−1 − rt−1

∥∥
2
.

Notice that r̃t−1 is supported on T̂ t−1∪(T̃ \Ť t−1), i.e., r̃t−1 =

MDT̂ t−1∪(T̃\Ť t−1)α̃
rt−1

, and α̃rt−1

T̃\Ť t−1 = α̃T̃\Ť t−1 .
We want to show that the index of the maximal coeffi-

cient (in absolute value) of r̃t−1 belongs to T̃ \ Ť t−1 and
hence we will be able to use almost the same derivation
of the basis of the induction. We prove it by contradiction.
Assume that the maximum is achieved for i ∈ T̂ t−1. By the
orthogonality property of the residual it is easy to see that
d∗
iM

∗r̃t−1 = 0. Using similar considerations as in (11) we
have 0 =

∣∣d∗
iM

∗r̃t−1
∣∣ ≥ (1−(k̃−1)µϵ)

∣∣∣α̃rt−1

i

∣∣∣ which implies

k̃ ≥ 1 + 1
µϵ

and we get a contradiction to (5).

Let w.l.o.g. t be the maximal coefficient in α̃rt−1

it . By the
above observations t ∈ T̃ \ Ť t−1 and α̃rt−1

t = α̃t. Applying
the same steps as in (11) and (12), we have

max
i∈T̄ t

∣∣d∗
iM

∗r̃t−1
∣∣ ≥ (1− µϵ(k̃ − 1)) |α̃t| , (16)

max
i∈(T̄ t)C\Ť t−1

∣∣d∗
iM

∗r̃t−1
∣∣ ≤ µϵk̃ |α̃t| .

Using norm inequalities and the projection property that
implies

∥∥I−MDT̂ t−1(MDT̂ t−1)†
∥∥
2
≤ 1, we have∥∥r̃t−1 − rt−1

∥∥
2
≤

∥∥M(x̃t−1 − x)
∥∥
2
≤ σM

∥∥x̃t−1 − x
∥∥
2

(17)

≤ σM

∥∥x̃t−1 − x̃
∥∥
2
+ σM ∥x̃− x∥2

Using Lemma 4.1 with (17) and then combining it with (15)
and (16) results with the condition

k̃ <
1

2
+

1

2µϵ
− σMϵ

|α̃t|µϵ
(∥WDα̃Ť t−1∥1 +

∥∥∥WDαT\T̃

∥∥∥
1
). (18)

The proof ends by noticing that (18) is implied by (5). �
Proof of Theorem 4.2: Note that x̂OMPϵ,2 = DT̂k(MDT̂k)†y

and y = Mx. Using some basic algebraic steps we have∥∥x̂OMPϵ,2 − x
∥∥
2
=

∥∥DT̂k(MDT̂k)
†Mx− x

∥∥
2

(19)

=
∥∥∥(DT̂k(MDT̂k)

†M− I)(I−DT̂kD
†
T̂k

)x
∥∥∥
2

≤
∥∥∥(I−DT̂kD

†
T̂k

)x
∥∥∥
2
,

where the last inequality is due to the fact that
DT̂k(MDT̂k)†M − I is a projection operator and thus
its operator norm is smaller or equal to 1. Splitting x into x̃
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and x− x̃, and then using the triangle inequality and the fact
that I−DT̂kD

†
T̂k

is a projection with (19) give

∥x̂OMP − x∥2 ≤
∥∥∥(I−DT̂kD

†
T̂k

)x̃
∥∥∥
2
+ ∥x− x̃∥2 . (20)

By Lemma 4.3, after k iterations (8) holds. Thus, Lemma 4.1
implies the existence of a vector ẑk, with a representation
supported on T̂ k, satisfying

∥∥x̃− ẑk
∥∥
2
≤

∥∥WDT̃
α̃
∥∥
1
ϵ. This

and projection properties yield for the first element in the rhs∥∥∥(I−DT̂kD
†
T̂k

)x̃
∥∥∥
2
≤

∥∥x̃− ẑk
∥∥
2
≤

∥∥WDT̃
α̃
∥∥
1
ϵ. (21)

For the second element we have using Lemma 4.1

∥x− x̃∥2 ≤
∥∥∥WDT\T̃

αT\T̃

∥∥∥
1
ϵ. (22)

Plugging (22) and (21) in (20) results with (6). Notice that
if T is an ϵ-independent set then T = T̃ and (7) follows
immediately from (6) because the first term in its rhs vanishes
and in the second one WDT

αT = WDα since αTC = 0. �
Remark 4.4: Theorem 4.2 can be easily extended to the

noisy case using the proof technique in [9].
Remark 4.5: If for a certain vector x supported on T , we

get
∣∣Ť k

∣∣ ≤ d then the condition in (5) in Theorem 4.2
implies a perfect recovery by using a simple twist in OMPϵ,2,
setting x̌OMPϵ,2 = DŤk(MDŤk)†y. Due to uniqueness condi-
tions, in this case x̌OMPϵ,2 = x. It can be easily shown that
|clos2ϵ,2(T )| ≤ d is a sufficient condition for this to happen.

Remark 4.6: From the previous remark we conclude that if
for any T such that |T | ≤ k we have |clos2ϵ,2(T )| ≤ d then
the algorithm provides us always with a perfect recovery.

Remark 4.7: Theorem 4.2 applies also to the regular OMP
if |⟨di,dj⟩|2

∥di∥2
2∥dj∥2

2

< 1− ϵ2 implies |⟨Mdi,Mdj⟩|2 < 1− ϵ2. The
latter property guarantees that in the step of selecting a new
element, OMP does not choose an index from Ť t. For a formal
proof, the induction step in Lemma 4.3 needs to be modified
showing that an element from Ť t is not chosen.

V. NUMERICAL SIMULATION

We turn to check numerically the recovery performance of
OMP and OMPϵ,2 for sparse signals under a dictionary that
contains pairs of correlated columns. We generate a dictionary
D = [D1,D2] where D1,D2 ∈ Rd×d, d = 1000, D1 contains
sparse columns with 2 non-zero entries which are ±1 with
probability 0.5 like in [7] and D2 is constructed such that each
of its columns d2

i is ϵ-correlated to the corresponding column
d1
i . Each entry of the measurement matrix M ∈ Rm×d is

distributed according to a normal Gaussian distribution, where
m=⌊γd⌋ and γ is the sampling rate – a value in the range (0, 1].
We set k to be ⌊ρm⌋ (ρ ≪ 1) and measure the recovery rate
of the representation α and the signal x for various values of
γ ∈ {0.1, 0.2, . . . , 0.9} and ρ ∈ {0.02, 0.04, . . . , 0.2}.

Figure 1 presents the recovery performance over 100 real-
izations per each parameter setting. We use the observation
in Remark 4.5 and present the recovery rate of OMPϵ,2 for
both x̂OMPϵ,2 and x̌OMPϵ,2 . As expected from Theorem 4.2, for
the first we do not get a perfect recovery but only an error
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Fig. 1. OMPϵ,2 recovery rate for x̂OMPϵ,2 (left) and x̌OMPϵ,2 (right) for
the synthetic experiment described in Section V. Color attribute: fraction of
realizations in which a perfect recovery is achieved.

of an order of ϵ (due to lack of space we do not present the
recovery error). However, as observed in Remark 4.5 when we
take an ϵ-closure on the achieved support we get an almost
perfect recovery. As high correlations between columns in D,
indeed imply high correlations between columns in MD in
the common case, the recovery performance we present for
OMPϵ,2 are the same as for OMP as predicted in Remark 4.7.
This provides a partial explanation for the reason that OMP
achieves recovery in the experiments in [6].

VI. CONCLUSION

In this paper we have proposed a variant of the OMP
algorithm – the ϵ-OMP (OMPϵ,2) – for recovering signals with
sparse representations under dictionaries with pairs of highly
correlated columns. We have shown, both theoretically and
empirically, that OMPϵ,2 succeeds in recovering such signals
and that the same holds for OMP. These results are a first step
for explaining its success for coherent dictionaries.
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